How to migrate from legacy LangChain agents to LangGraph
This guide assumes familiarity with the following concepts: - Agents - LangGraph.js - Tool calling
Here we focus on how to move from legacy LangChain agents to more
flexible LangGraph
agents. LangChain agents (the
AgentExecutor
in particular) have multiple configuration parameters. In this notebook
we will show how those parameters map to the LangGraph react agent
executor using the
create_react_agent
prebuilt helper method.
For more information on how to build agentic workflows in LangGraph, check out the docs here.
Prerequisites
This how-to guide uses OpenAI’s "gpt-4o-mini"
as the LLM. If you are
running this guide as a notebook, set your OpenAI API key as shown
below:
// process.env.OPENAI_API_KEY = "...";
// Optional, add tracing in LangSmith
// process.env.LANGSMITH_API_KEY = "ls...";
// process.env.LANGCHAIN_CALLBACKS_BACKGROUND = "true";
// process.env.LANGSMITH_TRACING = "true";
// process.env.LANGSMITH_PROJECT = "How to migrate: LangGraphJS";
// Reduce tracing latency if you are not in a serverless environment
// process.env.LANGCHAIN_CALLBACKS_BACKGROUND = "true";
Basic Usage
For basic creation and usage of a tool-calling ReAct-style agent, the functionality is the same. First, let’s define a model and tool(s), then we’ll use those to create an agent.
The tool
function is available in @langchain/core
version 0.2.7 and
above.
If you are on an older version of core, you should use instantiate and
use
DynamicStructuredTool
instead.
import { tool } from "@langchain/core/tools";
import { z } from "zod";
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
model: "gpt-4o-mini",
});
const magicTool = tool(
async ({ input }: { input: number }) => {
return `${input + 2}`;
},
{
name: "magic_function",
description: "Applies a magic function to an input.",
schema: z.object({
input: z.number(),
}),
}
);
const tools = [magicTool];
const query = "what is the value of magic_function(3)?";
For the LangChain
AgentExecutor
,
we define a prompt with a placeholder for the agent’s scratchpad. The
agent can be invoked as follows:
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { createToolCallingAgent } from "langchain/agents";
import { AgentExecutor } from "langchain/agents";
const prompt = ChatPromptTemplate.fromMessages([
["system", "You are a helpful assistant"],
["placeholder", "{chat_history}"],
["human", "{input}"],
["placeholder", "{agent_scratchpad}"],
]);
const agent = createToolCallingAgent({
llm,
tools,
prompt,
});
const agentExecutor = new AgentExecutor({
agent,
tools,
});
await agentExecutor.invoke({ input: query });
{
input: "what is the value of magic_function(3)?",
output: "The value of `magic_function(3)` is 5."
}
LangGraph’s off-the-shelf react agent
executor
manages a state that is defined by a list of messages. In a similar way
to the AgentExecutor
, it will continue to process the list until there
are no tool calls in the agent’s output. To kick it off, we input a list
of messages. The output will contain the entire state of the graph - in
this case, the conversation history and messages representing
intermediate tool calls:
import { createReactAgent } from "@langchain/langgraph/prebuilt";
const app = createReactAgent({
llm,
tools,
});
let agentOutput = await app.invoke({
messages: [
{
role: "user",
content: query,
},
],
});
console.log(agentOutput);
{
messages: [
HumanMessage {
"id": "eeef343c-80d1-4ccb-86af-c109343689cd",
"content": "what is the value of magic_function(3)?",
"additional_kwargs": {},
"response_metadata": {}
},
AIMessage {
"id": "chatcmpl-A7exs2uRqEipaZ7MtRbXnqu0vT0Da",
"content": "",
"additional_kwargs": {
"tool_calls": [
{
"id": "call_MtwWLn000BQHeSYQKsbxYNR0",
"type": "function",
"function": "[Object]"
}
]
},
"response_metadata": {
"tokenUsage": {
"completionTokens": 14,
"promptTokens": 55,
"totalTokens": 69
},
"finish_reason": "tool_calls",
"system_fingerprint": "fp_483d39d857"
},
"tool_calls": [
{
"name": "magic_function",
"args": {
"input": 3
},
"type": "tool_call",
"id": "call_MtwWLn000BQHeSYQKsbxYNR0"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 55,
"output_tokens": 14,
"total_tokens": 69
}
},
ToolMessage {
"id": "1001bf20-7cde-4f8b-81f1-1faa654a8bb4",
"content": "5",
"name": "magic_function",
"additional_kwargs": {},
"response_metadata": {},
"tool_call_id": "call_MtwWLn000BQHeSYQKsbxYNR0"
},
AIMessage {
"id": "chatcmpl-A7exsTk3ilzGzC8DuY8GpnKOaGdvx",
"content": "The value of `magic_function(3)` is 5.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 14,
"promptTokens": 78,
"totalTokens": 92
},
"finish_reason": "stop",
"system_fingerprint": "fp_54e2f484be"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 78,
"output_tokens": 14,
"total_tokens": 92
}
}
]
}
const messageHistory = agentOutput.messages;
const newQuery = "Pardon?";
agentOutput = await app.invoke({
messages: [...messageHistory, { role: "user", content: newQuery }],
});
{
messages: [
HumanMessage {
"id": "eeef343c-80d1-4ccb-86af-c109343689cd",
"content": "what is the value of magic_function(3)?",
"additional_kwargs": {},
"response_metadata": {}
},
AIMessage {
"id": "chatcmpl-A7exs2uRqEipaZ7MtRbXnqu0vT0Da",
"content": "",
"additional_kwargs": {
"tool_calls": [
{
"id": "call_MtwWLn000BQHeSYQKsbxYNR0",
"type": "function",
"function": "[Object]"
}
]
},
"response_metadata": {
"tokenUsage": {
"completionTokens": 14,
"promptTokens": 55,
"totalTokens": 69
},
"finish_reason": "tool_calls",
"system_fingerprint": "fp_483d39d857"
},
"tool_calls": [
{
"name": "magic_function",
"args": {
"input": 3
},
"type": "tool_call",
"id": "call_MtwWLn000BQHeSYQKsbxYNR0"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 55,
"output_tokens": 14,
"total_tokens": 69
}
},
ToolMessage {
"id": "1001bf20-7cde-4f8b-81f1-1faa654a8bb4",
"content": "5",
"name": "magic_function",
"additional_kwargs": {},
"response_metadata": {},
"tool_call_id": "call_MtwWLn000BQHeSYQKsbxYNR0"
},
AIMessage {
"id": "chatcmpl-A7exsTk3ilzGzC8DuY8GpnKOaGdvx",
"content": "The value of `magic_function(3)` is 5.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 14,
"promptTokens": 78,
"totalTokens": 92
},
"finish_reason": "stop",
"system_fingerprint": "fp_54e2f484be"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 78,
"output_tokens": 14,
"total_tokens": 92
}
},
HumanMessage {
"id": "1f2a9f41-c8ff-48fe-9d93-e663ee9279ff",
"content": "Pardon?",
"additional_kwargs": {},
"response_metadata": {}
},
AIMessage {
"id": "chatcmpl-A7exyTe9Ofs63Ex3sKwRx3wWksNup",
"content": "The result of calling the `magic_function` with an input of 3 is 5.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 20,
"promptTokens": 102,
"totalTokens": 122
},
"finish_reason": "stop",
"system_fingerprint": "fp_483d39d857"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 102,
"output_tokens": 20,
"total_tokens": 122
}
}
]
}
Prompt Templates
With legacy LangChain agents you have to pass in a prompt template. You can use this to control the agent.
With LangGraph react agent executor, by default there is no prompt. You can achieve similar control over the agent in a few ways:
- Pass in a system message as input
- Initialize the agent with a system message
- Initialize the agent with a function to transform messages before passing to the model.
Let’s take a look at all of these below. We will pass in custom instructions to get the agent to respond in Spanish.
First up, using LangChain’s AgentExecutor
:
const spanishPrompt = ChatPromptTemplate.fromMessages([
["system", "You are a helpful assistant. Respond only in Spanish."],
["placeholder", "{chat_history}"],
["human", "{input}"],
["placeholder", "{agent_scratchpad}"],
]);
const spanishAgent = createToolCallingAgent({
llm,
tools,
prompt: spanishPrompt,
});
const spanishAgentExecutor = new AgentExecutor({
agent: spanishAgent,
tools,
});
await spanishAgentExecutor.invoke({ input: query });
{
input: "what is the value of magic_function(3)?",
output: "El valor de `magic_function(3)` es 5."
}
Now, let’s pass a custom system message to react agent executor.
LangGraph’s prebuilt create_react_agent
does not take a prompt
template directly as a parameter, but instead takes a
messages_modifier
parameter. This modifies messages before they are
passed into the model, and can be one of four values:
- A
SystemMessage
, which is added to the beginning of the list of messages. - A
string
, which is converted to aSystemMessage
and added to the beginning of the list of messages. - A
Callable
, which should take in a list of messages. The output is then passed to the language model. - Or a
Runnable
, which should should take in a list of messages. The output is then passed to the language model.
Here’s how it looks in action:
const systemMessage = "You are a helpful assistant. Respond only in Spanish.";
// This could also be a SystemMessage object
// const systemMessage = new SystemMessage("You are a helpful assistant. Respond only in Spanish.");
const appWithSystemMessage = createReactAgent({
llm,
tools,
messageModifier: systemMessage,
});
agentOutput = await appWithSystemMessage.invoke({
messages: [{ role: "user", content: query }],
});
agentOutput.messages[agentOutput.messages.length - 1];
AIMessage {
"id": "chatcmpl-A7ey8LGWAs8ldrRRcO5wlHM85w9T8",
"content": "El valor de `magic_function(3)` es 5.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 14,
"promptTokens": 89,
"totalTokens": 103
},
"finish_reason": "stop",
"system_fingerprint": "fp_483d39d857"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 89,
"output_tokens": 14,
"total_tokens": 103
}
}
We can also pass in an arbitrary function. This function should take in
a list of messages and output a list of messages. We can do all types of
arbitrary formatting of messages here. In this cases, let’s just add a
SystemMessage
to the start of the list of messages.
import {
BaseMessage,
SystemMessage,
HumanMessage,
} from "@langchain/core/messages";
const modifyMessages = (messages: BaseMessage[]) => {
return [
new SystemMessage("You are a helpful assistant. Respond only in Spanish."),
...messages,
new HumanMessage("Also say 'Pandemonium!' after the answer."),
];
};
const appWithMessagesModifier = createReactAgent({
llm,
tools,
messageModifier: modifyMessages,
});
agentOutput = await appWithMessagesModifier.invoke({
messages: [{ role: "user", content: query }],
});
console.log({
input: query,
output: agentOutput.messages[agentOutput.messages.length - 1].content,
});
{
input: "what is the value of magic_function(3)?",
output: "El valor de magic_function(3) es 5. ¡Pandemonium!"
}
Memory
With LangChain’s
AgentExecutor
,
you could add chat memory classes so it can engage in a multi-turn
conversation.
import { ChatMessageHistory } from "@langchain/community/stores/message/in_memory";
import { RunnableWithMessageHistory } from "@langchain/core/runnables";
const memory = new ChatMessageHistory();
const agentExecutorWithMemory = new RunnableWithMessageHistory({
runnable: agentExecutor,
getMessageHistory: () => memory,
inputMessagesKey: "input",
historyMessagesKey: "chat_history",
});
const config = { configurable: { sessionId: "test-session" } };
agentOutput = await agentExecutorWithMemory.invoke(
{ input: "Hi, I'm polly! What's the output of magic_function of 3?" },
config
);
console.log(agentOutput.output);
agentOutput = await agentExecutorWithMemory.invoke(
{ input: "Remember my name?" },
config
);
console.log("---");
console.log(agentOutput.output);
console.log("---");
agentOutput = await agentExecutorWithMemory.invoke(
{ input: "what was that output again?" },
config
);
console.log(agentOutput.output);
The output of the magic function for the input 3 is 5.
---
Yes, your name is Polly! How can I assist you today?
---
The output of the magic function for the input 3 is 5.
In LangGraph
The equivalent to this type of memory in LangGraph is persistence, and checkpointing.
Add a checkpointer
to the agent and you get chat memory for free.
You’ll need to also pass a thread_id
within the configurable
field
in the config
parameter. Notice that we only pass one message into
each request, but the model still has context from previous runs:
import { MemorySaver } from "@langchain/langgraph";
const checkpointer = new MemorySaver();
const appWithMemory = createReactAgent({
llm: llm,
tools: tools,
checkpointSaver: checkpointer,
});
const langGraphConfig = {
configurable: {
thread_id: "test-thread",
},
};
agentOutput = await appWithMemory.invoke(
{
messages: [
{
role: "user",
content: "Hi, I'm polly! What's the output of magic_function of 3?",
},
],
},
langGraphConfig
);
console.log(agentOutput.messages[agentOutput.messages.length - 1].content);
console.log("---");
agentOutput = await appWithMemory.invoke(
{
messages: [{ role: "user", content: "Remember my name?" }],
},
langGraphConfig
);
console.log(agentOutput.messages[agentOutput.messages.length - 1].content);
console.log("---");
agentOutput = await appWithMemory.invoke(
{
messages: [{ role: "user", content: "what was that output again?" }],
},
langGraphConfig
);
console.log(agentOutput.messages[agentOutput.messages.length - 1].content);
Hi Polly! The output of the magic function for the input 3 is 5.
---
Yes, your name is Polly!
---
The output of the magic function for the input 3 was 5.
Iterating through steps
With LangChain’s
AgentExecutor
,
you could iterate over the steps using the
stream
method:
const langChainStream = await agentExecutor.stream({ input: query });
for await (const step of langChainStream) {
console.log(step);
}
{
intermediateSteps: [
{
action: {
tool: "magic_function",
toolInput: { input: 3 },
toolCallId: "call_IQZr1yy2Ug6904VkQg6pWGgR",
log: 'Invoking "magic_function" with {"input":3}\n',
messageLog: [
AIMessageChunk {
"id": "chatcmpl-A7eziUrDmLSSMoiOskhrfbsHqx4Sd",
"content": "",
"additional_kwargs": {
"tool_calls": [
{
"index": 0,
"id": "call_IQZr1yy2Ug6904VkQg6pWGgR",
"type": "function",
"function": "[Object]"
}
]
},
"response_metadata": {
"prompt": 0,
"completion": 0,
"finish_reason": "tool_calls",
"system_fingerprint": "fp_483d39d857"
},
"tool_calls": [
{
"name": "magic_function",
"args": {
"input": 3
},
"id": "call_IQZr1yy2Ug6904VkQg6pWGgR",
"type": "tool_call"
}
],
"tool_call_chunks": [
{
"name": "magic_function",
"args": "{\"input\":3}",
"id": "call_IQZr1yy2Ug6904VkQg6pWGgR",
"index": 0,
"type": "tool_call_chunk"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 61,
"output_tokens": 14,
"total_tokens": 75
}
}
]
},
observation: "5"
}
]
}
{ output: "The value of `magic_function(3)` is 5." }
In LangGraph
In LangGraph, things are handled natively using the stream method.
const langGraphStream = await app.stream(
{ messages: [{ role: "user", content: query }] },
{ streamMode: "updates" }
);
for await (const step of langGraphStream) {
console.log(step);
}
{
agent: {
messages: [
AIMessage {
"id": "chatcmpl-A7ezu8hirCENjdjR2GpLjkzXFTEmp",
"content": "",
"additional_kwargs": {
"tool_calls": [
{
"id": "call_KhhNL0m3mlPoJiboFMoX8hzk",
"type": "function",
"function": "[Object]"
}
]
},
"response_metadata": {
"tokenUsage": {
"completionTokens": 14,
"promptTokens": 55,
"totalTokens": 69
},
"finish_reason": "tool_calls",
"system_fingerprint": "fp_483d39d857"
},
"tool_calls": [
{
"name": "magic_function",
"args": {
"input": 3
},
"type": "tool_call",
"id": "call_KhhNL0m3mlPoJiboFMoX8hzk"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 55,
"output_tokens": 14,
"total_tokens": 69
}
}
]
}
}
{
tools: {
messages: [
ToolMessage {
"content": "5",
"name": "magic_function",
"additional_kwargs": {},
"response_metadata": {},
"tool_call_id": "call_KhhNL0m3mlPoJiboFMoX8hzk"
}
]
}
}
{
agent: {
messages: [
AIMessage {
"id": "chatcmpl-A7ezuTrh8GC550eKa1ZqRZGjpY5zh",
"content": "The value of `magic_function(3)` is 5.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 14,
"promptTokens": 78,
"totalTokens": 92
},
"finish_reason": "stop",
"system_fingerprint": "fp_483d39d857"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 78,
"output_tokens": 14,
"total_tokens": 92
}
}
]
}
}
returnIntermediateSteps
Setting this parameter on AgentExecutor allows users to access intermediate_steps, which pairs agent actions (e.g., tool invocations) with their outcomes.
const agentExecutorWithIntermediateSteps = new AgentExecutor({
agent,
tools,
returnIntermediateSteps: true,
});
const result = await agentExecutorWithIntermediateSteps.invoke({
input: query,
});
console.log(result.intermediateSteps);
[
{
action: {
tool: "magic_function",
toolInput: { input: 3 },
toolCallId: "call_mbg1xgLEYEEWClbEaDe7p5tK",
log: 'Invoking "magic_function" with {"input":3}\n',
messageLog: [
AIMessageChunk {
"id": "chatcmpl-A7f0NdSRSUJsBP6ENTpiQD4LzpBAH",
"content": "",
"additional_kwargs": {
"tool_calls": [
{
"index": 0,
"id": "call_mbg1xgLEYEEWClbEaDe7p5tK",
"type": "function",
"function": "[Object]"
}
]
},
"response_metadata": {
"prompt": 0,
"completion": 0,
"finish_reason": "tool_calls",
"system_fingerprint": "fp_54e2f484be"
},
"tool_calls": [
{
"name": "magic_function",
"args": {
"input": 3
},
"id": "call_mbg1xgLEYEEWClbEaDe7p5tK",
"type": "tool_call"
}
],
"tool_call_chunks": [
{
"name": "magic_function",
"args": "{\"input\":3}",
"id": "call_mbg1xgLEYEEWClbEaDe7p5tK",
"index": 0,
"type": "tool_call_chunk"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 61,
"output_tokens": 14,
"total_tokens": 75
}
}
]
},
observation: "5"
}
]
By default the react agent executor in LangGraph appends all messages to the central state. Therefore, it is easy to see any intermediate steps by just looking at the full state.
agentOutput = await app.invoke({
messages: [{ role: "user", content: query }],
});
console.log(agentOutput.messages);
[
HumanMessage {
"id": "46a825b2-13a3-4f19-b1aa-7716c53eb247",
"content": "what is the value of magic_function(3)?",
"additional_kwargs": {},
"response_metadata": {}
},
AIMessage {
"id": "chatcmpl-A7f0iUuWktC8gXztWZCjofqyCozY2",
"content": "",
"additional_kwargs": {
"tool_calls": [
{
"id": "call_ndsPDU58wsMeGaqr41cSlLlF",
"type": "function",
"function": "[Object]"
}
]
},
"response_metadata": {
"tokenUsage": {
"completionTokens": 14,
"promptTokens": 55,
"totalTokens": 69
},
"finish_reason": "tool_calls",
"system_fingerprint": "fp_483d39d857"
},
"tool_calls": [
{
"name": "magic_function",
"args": {
"input": 3
},
"type": "tool_call",
"id": "call_ndsPDU58wsMeGaqr41cSlLlF"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 55,
"output_tokens": 14,
"total_tokens": 69
}
},
ToolMessage {
"id": "ac6aa309-bbfb-46cd-ba27-cbdbfd848705",
"content": "5",
"name": "magic_function",
"additional_kwargs": {},
"response_metadata": {},
"tool_call_id": "call_ndsPDU58wsMeGaqr41cSlLlF"
},
AIMessage {
"id": "chatcmpl-A7f0i7iHyDUV6is6sgwtcXivmFZ1x",
"content": "The value of `magic_function(3)` is 5.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 14,
"promptTokens": 78,
"totalTokens": 92
},
"finish_reason": "stop",
"system_fingerprint": "fp_54e2f484be"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 78,
"output_tokens": 14,
"total_tokens": 92
}
}
]
maxIterations
AgentExecutor
implements a maxIterations
parameter, whereas this is
controlled via recursionLimit
in LangGraph.
Note that in the LangChain AgentExecutor
, an “iteration” includes a
full turn of tool invocation and execution. In LangGraph, each step
contributes to the recursion limit, so we will need to multiply by two
(and add one) to get equivalent results.
Here’s an example of how you’d set this parameter with the legacy
AgentExecutor
:
const badMagicTool = tool(
async ({ input: _input }) => {
return "Sorry, there was a temporary error. Please try again with the same input.";
},
{
name: "magic_function",
description: "Applies a magic function to an input.",
schema: z.object({
input: z.string(),
}),
}
);
const badTools = [badMagicTool];
const spanishAgentExecutorWithMaxIterations = new AgentExecutor({
agent: createToolCallingAgent({
llm,
tools: badTools,
prompt: spanishPrompt,
}),
tools: badTools,
verbose: true,
maxIterations: 2,
});
await spanishAgentExecutorWithMaxIterations.invoke({ input: query });
If the recursion limit is reached in LangGraph.js, the framework will raise a specific exception type that we can catch and manage similarly to AgentExecutor.
import { GraphRecursionError } from "@langchain/langgraph";
const RECURSION_LIMIT = 2 * 2 + 1;
const appWithBadTools = createReactAgent({ llm, tools: badTools });
try {
await appWithBadTools.invoke(
{
messages: [{ role: "user", content: query }],
},
{
recursionLimit: RECURSION_LIMIT,
}
);
} catch (e) {
if (e instanceof GraphRecursionError) {
console.log("Recursion limit reached.");
} else {
throw e;
}
}
Recursion limit reached.
Next steps
You’ve now learned how to migrate your LangChain agent executors to LangGraph.
Next, check out other LangGraph how-to guides.