Skip to main content

DuckDuckGoSearch

This notebook provides a quick overview for getting started with DuckDuckGoSearch. For detailed documentation of all DuckDuckGoSearch features and configurations head to the API reference.

DuckDuckGoSearch offers a privacy-focused search API designed for LLM Agents. It provides seamless integration with a wide range of data sources, prioritizing user privacy and relevant search results.

Overview

Integration details

ClassPackagePY supportPackage latest
DuckDuckGoSearch@langchain/communityNPM - Version

Setup

The integration lives in the @langchain/community package, along with the duck-duck-scrape dependency:

yarn add @langchain/community @langchain/core duck-duck-scrape

Credentials

It’s also helpful (but not needed) to set up LangSmith for best-in-class observability:

process.env.LANGSMITH_TRACING = "true";
process.env.LANGSMITH_API_KEY = "your-api-key";

Instantiation

You can instantiate an instance of the DuckDuckGoSearch tool like this:

import { DuckDuckGoSearch } from "@langchain/community/tools/duckduckgo_search";

const tool = new DuckDuckGoSearch({ maxResults: 1 });

Invocation

Invoke directly with args

await tool.invoke("what is the current weather in sf?");
[{"title":"San Francisco, CA Current Weather | AccuWeather","link":"https://www.accuweather.com/en/us/san-francisco/94103/current-weather/347629","snippet":"<b>Current</b> <b>weather</b> <b>in</b> San Francisco, CA. Check <b>current</b> conditions in San Francisco, CA with radar, hourly, and more."}]

Invoke with ToolCall

We can also invoke the tool with a model-generated ToolCall, in which case a ToolMessage will be returned:

// This is usually generated by a model, but we'll create a tool call directly for demo purposes.
const modelGeneratedToolCall = {
args: {
input: "what is the current weather in sf?",
},
id: "tool_call_id",
name: tool.name,
type: "tool_call",
};
await tool.invoke(modelGeneratedToolCall);
ToolMessage {
"content": "[{\"title\":\"San Francisco, CA Weather Conditions | Weather Underground\",\"link\":\"https://www.wunderground.com/weather/us/ca/san-francisco\",\"snippet\":\"San Francisco <b>Weather</b> Forecasts. <b>Weather</b> Underground provides local & long-range <b>weather</b> forecasts, weatherreports, maps & tropical <b>weather</b> conditions for the San Francisco area.\"}]",
"name": "duckduckgo-search",
"additional_kwargs": {},
"response_metadata": {},
"tool_call_id": "tool_call_id"
}

Chaining

We can use our tool in a chain by first binding it to a tool-calling model and then calling it:

Pick your chat model:

Install dependencies

yarn add @langchain/openai 

Add environment variables

OPENAI_API_KEY=your-api-key

Instantiate the model

import { ChatOpenAI } from "@langchain/openai";

const llm = new ChatOpenAI({
model: "gpt-4o-mini",
temperature: 0
});
import { HumanMessage } from "@langchain/core/messages";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { RunnableLambda } from "@langchain/core/runnables";

const prompt = ChatPromptTemplate.fromMessages([
["system", "You are a helpful assistant."],
["placeholder", "{messages}"],
]);

const llmWithTools = llm.bindTools([tool]);

const chain = prompt.pipe(llmWithTools);

const toolChain = RunnableLambda.from(async (userInput: string, config) => {
const humanMessage = new HumanMessage(userInput);
const aiMsg = await chain.invoke(
{
messages: [new HumanMessage(userInput)],
},
config
);
const toolMsgs = await tool.batch(aiMsg.tool_calls, config);
return chain.invoke(
{
messages: [humanMessage, aiMsg, ...toolMsgs],
},
config
);
});

const toolChainResult = await toolChain.invoke(
"how many people have climbed mount everest?"
);
const { tool_calls, content } = toolChainResult;

console.log(
"AIMessage",
JSON.stringify(
{
tool_calls,
content,
},
null,
2
)
);
AIMessage {
"tool_calls": [],
"content": "As of December 2023, a total of 6,664 different people have reached the summit of Mount Everest."
}

Agents

For guides on how to use LangChain tools in agents, see the LangGraph.js docs.

API reference

For detailed documentation of all DuckDuckGoSearch features and configurations head to the API reference


Was this page helpful?


You can also leave detailed feedback on GitHub.