VectorStoreToolkit
This will help you getting started with the VectorStoreToolkit. For detailed documentation of all VectorStoreToolkit features and configurations head to the API reference.
The VectorStoreToolkit
is a toolkit which takes in a vector store, and
converts it to a tool which can then be invoked, passed to LLMs, agents
and more.
Setup
If you want to get automated tracing from runs of individual tools, you can also set your LangSmith API key by uncommenting below:
process.env.LANGSMITH_TRACING = "true";
process.env.LANGSMITH_API_KEY = "your-api-key";
Installation
This toolkit lives in the langchain
package:
- npm
- yarn
- pnpm
npm i langchain @langchain/core
yarn add langchain @langchain/core
pnpm add langchain @langchain/core
Instantiation
Now we can instantiate our toolkit. First, we need to define the LLM we’ll use in the toolkit.
Pick your chat model:
- OpenAI
- Anthropic
- FireworksAI
- MistralAI
- Groq
- VertexAI
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/openai
yarn add @langchain/openai
pnpm add @langchain/openai
Add environment variables
OPENAI_API_KEY=your-api-key
Instantiate the model
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
model: "gpt-4o-mini",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/anthropic
yarn add @langchain/anthropic
pnpm add @langchain/anthropic
Add environment variables
ANTHROPIC_API_KEY=your-api-key
Instantiate the model
import { ChatAnthropic } from "@langchain/anthropic";
const llm = new ChatAnthropic({
model: "claude-3-5-sonnet-20240620",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
Add environment variables
FIREWORKS_API_KEY=your-api-key
Instantiate the model
import { ChatFireworks } from "@langchain/community/chat_models/fireworks";
const llm = new ChatFireworks({
model: "accounts/fireworks/models/llama-v3p1-70b-instruct",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/mistralai
yarn add @langchain/mistralai
pnpm add @langchain/mistralai
Add environment variables
MISTRAL_API_KEY=your-api-key
Instantiate the model
import { ChatMistralAI } from "@langchain/mistralai";
const llm = new ChatMistralAI({
model: "mistral-large-latest",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/groq
yarn add @langchain/groq
pnpm add @langchain/groq
Add environment variables
GROQ_API_KEY=your-api-key
Instantiate the model
import { ChatGroq } from "@langchain/groq";
const llm = new ChatGroq({
model: "mixtral-8x7b-32768",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/google-vertexai
yarn add @langchain/google-vertexai
pnpm add @langchain/google-vertexai
Add environment variables
GOOGLE_APPLICATION_CREDENTIALS=credentials.json
Instantiate the model
import { ChatVertexAI } from "@langchain/google-vertexai";
const llm = new ChatVertexAI({
model: "gemini-1.5-flash",
temperature: 0
});
import { VectorStoreToolkit, VectorStoreInfo } from "langchain/agents/toolkits";
import { OpenAIEmbeddings } from "@langchain/openai";
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import { RecursiveCharacterTextSplitter } from "@langchain/textsplitters";
import fs from "fs";
// Load a text file to use as our data source.
const text = fs.readFileSync(
"../../../../../examples/state_of_the_union.txt",
"utf8"
);
// Split the text into chunks before inserting to our store
const textSplitter = new RecursiveCharacterTextSplitter({ chunkSize: 1000 });
const docs = await textSplitter.createDocuments([text]);
const vectorStore = await MemoryVectorStore.fromDocuments(
docs,
new OpenAIEmbeddings()
);
const vectorStoreInfo: VectorStoreInfo = {
name: "state_of_union_address",
description: "the most recent state of the Union address",
vectorStore,
};
const toolkit = new VectorStoreToolkit(vectorStoreInfo, llm);
Tools
Here, we can see it converts our vector store into a tool:
const tools = toolkit.getTools();
console.log(
tools.map((tool) => ({
name: tool.name,
description: tool.description,
}))
);
[
{
name: 'state_of_union_address',
description: 'Useful for when you need to answer questions about state_of_union_address. Whenever you need information about the most recent state of the Union address you should ALWAYS use this. Input should be a fully formed question.'
}
]
Use within an agent
First, ensure you have LangGraph installed:
- npm
- yarn
- pnpm
npm i @langchain/langgraph
yarn add @langchain/langgraph
pnpm add @langchain/langgraph
Then, instantiate the agent:
import { createReactAgent } from "@langchain/langgraph/prebuilt";
const agentExecutor = createReactAgent({ llm, tools });
const exampleQuery =
"What did biden say about Ketanji Brown Jackson is the state of the union address?";
const events = await agentExecutor.stream(
{ messages: [["user", exampleQuery]] },
{ streamMode: "values" }
);
for await (const event of events) {
const lastMsg = event.messages[event.messages.length - 1];
if (lastMsg.tool_calls?.length) {
console.dir(lastMsg.tool_calls, { depth: null });
} else if (lastMsg.content) {
console.log(lastMsg.content);
}
}
[
{
name: 'state_of_union_address',
args: {
input: 'What did Biden say about Ketanji Brown Jackson in the State of the Union address?'
},
type: 'tool_call',
id: 'call_glJSWLNrftKHa92A6j8x4jhd'
}
]
In the State of the Union address, Biden mentioned that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson, describing her as one of the nation’s top legal minds who will continue Justice Breyer’s legacy of excellence. He highlighted her background as a former top litigator in private practice, a former federal public defender, and noted that she comes from a family of public school educators and police officers. He also pointed out that she has received a broad range of support since her nomination.
In the State of the Union address, President Biden spoke about Ketanji Brown Jackson, stating that he nominated her as one of the nation’s top legal minds who will continue Justice Breyer’s legacy of excellence. He highlighted her experience as a former top litigator in private practice and a federal public defender, as well as her background coming from a family of public school educators and police officers. Biden also noted that she has received a broad range of support since her nomination.
API reference
For detailed documentation of all VectorStoreToolkit features and configurations head to the API reference.