Skip to main content

CloudflareWorkersAIEmbeddings

This will help you get started with Cloudflare Workers AI embedding models using LangChain. For detailed documentation on CloudflareWorkersAIEmbeddings features and configuration options, please refer to the API reference.

Overview

Integration details

ClassPackageLocalPy supportPackage downloadsPackage latest
CloudflareWorkersAIEmbeddings@langchain/cloudflareNPM - DownloadsNPM - Version

Setup

To access Cloudflare embedding models you’ll need to create a Cloudflare account and install the @langchain/cloudflare integration package. This integration is made to run in a Cloudflare worker and accept a binding.

Follow the official docs to set up your worker.

Your wrangler.toml file should look similar to this:

name = "langchain-test"
main = "worker.js"
compatibility_date = "2024-01-10"

[[vectorize]]
binding = "VECTORIZE_INDEX"
index_name = "langchain-test"

[ai]
binding = "AI"

Credentials

If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:

# export LANGSMITH_TRACING="true"
# export LANGSMITH_API_KEY="your-api-key"

Installation

The LangChain CloudflareWorkersAIEmbeddings integration lives in the @langchain/cloudflare package:

yarn add @langchain/cloudflare @langchain/core

Usage

Below is an example worker that uses Workers AI embeddings with a Cloudflare Vectorize vectorstore.

// @ts-nocheck

import type {
VectorizeIndex,
Fetcher,
Request,
} from "@cloudflare/workers-types";

import {
CloudflareVectorizeStore,
CloudflareWorkersAIEmbeddings,
} from "@langchain/cloudflare";

export interface Env {
VECTORIZE_INDEX: VectorizeIndex;
AI: Fetcher;
}

export default {
async fetch(request: Request, env: Env) {
const { pathname } = new URL(request.url);
const embeddings = new CloudflareWorkersAIEmbeddings({
binding: env.AI,
model: "@cf/baai/bge-small-en-v1.5",
});
const store = new CloudflareVectorizeStore(embeddings, {
index: env.VECTORIZE_INDEX,
});
if (pathname === "/") {
const results = await store.similaritySearch("hello", 5);
return Response.json(results);
} else if (pathname === "/load") {
// Upsertion by id is supported
await store.addDocuments(
[
{
pageContent: "hello",
metadata: {},
},
{
pageContent: "world",
metadata: {},
},
{
pageContent: "hi",
metadata: {},
},
],
{ ids: ["id1", "id2", "id3"] }
);

return Response.json({ success: true });
} else if (pathname === "/clear") {
await store.delete({ ids: ["id1", "id2", "id3"] });
return Response.json({ success: true });
}

return Response.json({ error: "Not Found" }, { status: 404 });
},
};

API reference

For detailed documentation of all CloudflareWorkersAIEmbeddings features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_cloudflare.CloudflareWorkersAIEmbeddings.html


Was this page helpful?


You can also leave detailed feedback on GitHub.