CloudflareWorkersAIEmbeddings
This will help you get started with Cloudflare Workers AI embedding
models using LangChain. For detailed
documentation on CloudflareWorkersAIEmbeddings
features and
configuration options, please refer to the API
reference.
Overview
Integration details
Class | Package | Local | Py support | Package downloads | Package latest |
---|---|---|---|---|---|
CloudflareWorkersAIEmbeddings | @langchain/cloudflare | ❌ | ❌ |
Setup
To access Cloudflare embedding models you’ll need to create a Cloudflare
account and install the @langchain/cloudflare
integration package.
This integration is made to run in a Cloudflare worker and accept a
binding.
Follow the official docs to set up your worker.
Your wrangler.toml
file should look similar to this:
name = "langchain-test"
main = "worker.js"
compatibility_date = "2024-01-10"
[[vectorize]]
binding = "VECTORIZE_INDEX"
index_name = "langchain-test"
[ai]
binding = "AI"
Credentials
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGSMITH_TRACING="true"
# export LANGSMITH_API_KEY="your-api-key"
Installation
The LangChain CloudflareWorkersAIEmbeddings integration lives in the
@langchain/cloudflare
package:
- npm
- yarn
- pnpm
npm i @langchain/cloudflare @langchain/core
yarn add @langchain/cloudflare @langchain/core
pnpm add @langchain/cloudflare @langchain/core
Usage
Below is an example worker that uses Workers AI embeddings with a Cloudflare Vectorize vectorstore.
// @ts-nocheck
import type {
VectorizeIndex,
Fetcher,
Request,
} from "@cloudflare/workers-types";
import {
CloudflareVectorizeStore,
CloudflareWorkersAIEmbeddings,
} from "@langchain/cloudflare";
export interface Env {
VECTORIZE_INDEX: VectorizeIndex;
AI: Fetcher;
}
export default {
async fetch(request: Request, env: Env) {
const { pathname } = new URL(request.url);
const embeddings = new CloudflareWorkersAIEmbeddings({
binding: env.AI,
model: "@cf/baai/bge-small-en-v1.5",
});
const store = new CloudflareVectorizeStore(embeddings, {
index: env.VECTORIZE_INDEX,
});
if (pathname === "/") {
const results = await store.similaritySearch("hello", 5);
return Response.json(results);
} else if (pathname === "/load") {
// Upsertion by id is supported
await store.addDocuments(
[
{
pageContent: "hello",
metadata: {},
},
{
pageContent: "world",
metadata: {},
},
{
pageContent: "hi",
metadata: {},
},
],
{ ids: ["id1", "id2", "id3"] }
);
return Response.json({ success: true });
} else if (pathname === "/clear") {
await store.delete({ ids: ["id1", "id2", "id3"] });
return Response.json({ success: true });
}
return Response.json({ error: "Not Found" }, { status: 404 });
},
};
API reference
For detailed documentation of all CloudflareWorkersAIEmbeddings
features and configurations head to the API reference:
https://api.js.langchain.com/classes/langchain_cloudflare.CloudflareWorkersAIEmbeddings.html
Related
- Embedding model conceptual guide
- Embedding model how-to guides