Skip to main content

TensorFlow

This Embeddings integration runs the embeddings entirely in your browser or Node.js environment, using TensorFlow.js. This means that your data isn't sent to any third party, and you don't need to sign up for any API keys. However, it does require more memory and processing power than the other integrations.

npm install @langchain/community @langchain/core @tensorflow/tfjs-core@3.6.0 @tensorflow/tfjs-converter@3.6.0 @tensorflow-models/universal-sentence-encoder@1.3.3 @tensorflow/tfjs-backend-cpu
import "@tensorflow/tfjs-backend-cpu";
import { TensorFlowEmbeddings } from "@langchain/community/embeddings/tensorflow";

const embeddings = new TensorFlowEmbeddings();

This example uses the CPU backend, which works in any JS environment. However, you can use any of the backends supported by TensorFlow.js, including GPU and WebAssembly, which will be a lot faster. For Node.js you can use the @tensorflow/tfjs-node package, and for the browser you can use the @tensorflow/tfjs-backend-webgl package. See the TensorFlow.js documentation for more information.


Was this page helpful?


You can also leave detailed feedback on GitHub.