ChatPerplexity
This guide will help you getting started with Perplexity chat
models. For detailed documentation of all
ChatPerplexity
features and configurations head to the API
reference.
Overviewβ
Integration detailsβ
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatPerplexity | @langchain/community | β | beta | β | ![]() | ![]() |
Model featuresβ
See the links in the table headers below for guides on how to use specific features.
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|
β | β | β | β | β | β | β | β | β |
Note that at the time of writing, Perplexity only supports structured outputs on certain usage tiers.
Setupβ
To access Perplexity models youβll need to create a Perplexity account,
get an API key, and install the @langchain/community
integration
package.
Credentialsβ
Head to https://perplexity.ai to sign up for Perplexity and generate an
API key. Once youβve done this set the PERPLEXITY_API_KEY
environment
variable:
export PERPLEXITY_API_KEY="your-api-key"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGSMITH_TRACING="true"
# export LANGSMITH_API_KEY="your-api-key"
Installationβ
The LangChain Perplexity integration lives in the @langchain/community
package:
- npm
- yarn
- pnpm
npm i @langchain/community @langchain/core
yarn add @langchain/community @langchain/core
pnpm add @langchain/community @langchain/core
Instantiationβ
Now we can instantiate our model object and generate chat completions:
import { ChatPerplexity } from "@langchain/community/chat_models/perplexity";
const llm = new ChatPerplexity({
model: "sonar",
temperature: 0,
maxTokens: undefined,
timeout: undefined,
maxRetries: 2,
// other params...
});
Invocationβ
const aiMsg = await llm.invoke([
{
role: "system",
content:
"You are a helpful assistant that translates English to French. Translate the user sentence.",
},
{
role: "user",
content: "I love programming.",
},
]);
aiMsg;
AIMessage {
"id": "run-71853938-aa30-4861-9019-f12323c09f9a",
"content": "J'adore la programmation.",
"additional_kwargs": {
"citations": [
"https://careersatagoda.com/blog/why-we-love-programming/",
"https://henrikwarne.com/2012/06/02/why-i-love-coding/",
"https://forum.freecodecamp.org/t/i-love-programming-but/497502",
"https://ilovecoding.org",
"https://thecodinglove.com"
]
},
"response_metadata": {
"tokenUsage": {
"promptTokens": 20,
"completionTokens": 9,
"totalTokens": 29
}
},
"tool_calls": [],
"invalid_tool_calls": []
}
console.log(aiMsg.content);
J'adore la programmation.
Chainingβ
We can chain our model with a prompt template like so:
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"id": "run-a44dc452-4a71-423d-a4ee-50a2d7c90abd",
"content": "**English to German Translation:**\n\n\"I love programming\" translates to **\"Ich liebe das Programmieren.\"**\n\nIf you'd like to express your passion for programming in more detail, here are some additional translations:\n\n- **\"Programming is incredibly rewarding and fulfilling.\"** translates to **\"Das Programmieren ist unglaublich lohnend und erfΓΌllend.\"**\n- **\"I enjoy solving problems through coding.\"** translates to **\"Ich genieΓe es, Probleme durch Codieren zu lΓΆsen.\"**\n- **\"I find the process of creating something from nothing very satisfying.\"** translates to **\"Ich finde den Prozess, etwas aus dem Nichts zu schaffen, sehr befriedigend.\"**",
"additional_kwargs": {
"citations": [
"https://careersatagoda.com/blog/why-we-love-programming/",
"https://henrikwarne.com/2012/06/02/why-i-love-coding/",
"https://dev.to/dvddpl/coding-is-boring-why-do-you-love-coding-cl0",
"https://forum.freecodecamp.org/t/i-love-programming-but/497502",
"https://ilovecoding.org"
]
},
"response_metadata": {
"tokenUsage": {
"promptTokens": 15,
"completionTokens": 149,
"totalTokens": 164
}
},
"tool_calls": [],
"invalid_tool_calls": []
}
API referenceβ
For detailed documentation of all ChatPerplexity features and configurations head to the API reference: https://api.js.langchain.com/classes/\_langchain_community.chat_models_perplexity.ChatPerplexity.html
Relatedβ
- Chat model conceptual guide
- Chat model how-to guides