ChatOpenAI
OpenAI is an artificial intelligence (AI) research laboratory.
This guide will help you getting started with ChatOpenAI chat models. For detailed documentation of all ChatOpenAI features and configurations head to the API reference.
Overviewβ
Integration detailsβ
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatOpenAI | @langchain/openai | β | β | β | ![]() | ![]() |
Model featuresβ
See the links in the table headers below for guides on how to use specific features.
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|
β | β | β | β | β | β | β | β | β |
Setupβ
To access OpenAI chat models youβll need to create an OpenAI account,
get an API key, and install the @langchain/openai
integration package.
Credentialsβ
Head to OpenAIβs website to sign up for
OpenAI and generate an API key. Once youβve done this set the
OPENAI_API_KEY
environment variable:
export OPENAI_API_KEY="your-api-key"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGSMITH_TRACING="true"
# export LANGSMITH_API_KEY="your-api-key"
Installationβ
The LangChain ChatOpenAI
integration lives in the @langchain/openai
package:
- npm
- yarn
- pnpm
npm i @langchain/openai @langchain/core
yarn add @langchain/openai @langchain/core
pnpm add @langchain/openai @langchain/core
Instantiationβ
Now we can instantiate our model object and generate chat completions:
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
model: "gpt-4o",
temperature: 0,
// other params...
});
Invocationβ
const aiMsg = await llm.invoke([
{
role: "system",
content:
"You are a helpful assistant that translates English to French. Translate the user sentence.",
},
{
role: "user",
content: "I love programming.",
},
]);
aiMsg;
AIMessage {
"id": "chatcmpl-ADItECqSPuuEuBHHPjeCkh9wIO1H5",
"content": "J'adore la programmation.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 5,
"promptTokens": 31,
"totalTokens": 36
},
"finish_reason": "stop",
"system_fingerprint": "fp_5796ac6771"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 31,
"output_tokens": 5,
"total_tokens": 36
}
}
console.log(aiMsg.content);
J'adore la programmation.
Chainingβ
We can chain our model with a prompt template like so:
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"id": "chatcmpl-ADItFaWFNqkSjSmlxeGk6HxcBHzVN",
"content": "Ich liebe Programmieren.",
"additional_kwargs": {},
"response_metadata": {
"tokenUsage": {
"completionTokens": 5,
"promptTokens": 26,
"totalTokens": 31
},
"finish_reason": "stop",
"system_fingerprint": "fp_5796ac6771"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 26,
"output_tokens": 5,
"total_tokens": 31
}
}
Custom URLsβ
You can customize the base URL the SDK sends requests to by passing a
configuration
parameter like this:
import { ChatOpenAI } from "@langchain/openai";
const llmWithCustomURL = new ChatOpenAI({
temperature: 0.9,
configuration: {
baseURL: "https://your_custom_url.com",
},
});
await llmWithCustomURL.invoke("Hi there!");
The configuration
field also accepts other ClientOptions
parameters
accepted by the official SDK.
If you are hosting on Azure OpenAI, see the dedicated page instead.
Custom headersβ
You can specify custom headers in the same configuration
field:
import { ChatOpenAI } from "@langchain/openai";
const llmWithCustomHeaders = new ChatOpenAI({
temperature: 0.9,
configuration: {
defaultHeaders: {
Authorization: `Bearer SOME_CUSTOM_VALUE`,
},
},
});
await llmWithCustomHeaders.invoke("Hi there!");
Disabling streaming usage metadataβ
Some proxies or third-party providers present largely the same API
interface as OpenAI, but donβt support the more recently added
stream_options
parameter to return streaming usage. You can use
ChatOpenAI
to access these providers by disabling streaming usage like
this:
import { ChatOpenAI } from "@langchain/openai";
const llmWithoutStreamUsage = new ChatOpenAI({
temperature: 0.9,
streamUsage: false,
configuration: {
baseURL: "https://proxy.com",
},
});
await llmWithoutStreamUsage.invoke("Hi there!");
Calling fine-tuned modelsβ
You can call fine-tuned OpenAI models by passing in your corresponding
modelName
parameter.
This generally takes the form of
ft:{OPENAI_MODEL_NAME}:{ORG_NAME}::{MODEL_ID}
. For example:
import { ChatOpenAI } from "@langchain/openai";
const fineTunedLlm = new ChatOpenAI({
temperature: 0.9,
model: "ft:gpt-3.5-turbo-0613:{ORG_NAME}::{MODEL_ID}",
});
await fineTunedLlm.invoke("Hi there!");
Generation metadataβ
If you need additional information like logprobs or token usage, these
will be returned directly in the .invoke
response within the
response_metadata
field on the message.
Requires @langchain/core
version >=0.1.48.
import { ChatOpenAI } from "@langchain/openai";
// See https://cookbook.openai.com/examples/using_logprobs for details
const llmWithLogprobs = new ChatOpenAI({
logprobs: true,
// topLogprobs: 5,
});
const responseMessageWithLogprobs = await llmWithLogprobs.invoke("Hi there!");
console.dir(responseMessageWithLogprobs.response_metadata.logprobs, {
depth: null,
});
{
content: [
{
token: 'Hello',
logprob: -0.0004740447,
bytes: [ 72, 101, 108, 108, 111 ],
top_logprobs: []
},
{
token: '!',
logprob: -0.00004334534,
bytes: [ 33 ],
top_logprobs: []
},
{
token: ' How',
logprob: -0.000030113732,
bytes: [ 32, 72, 111, 119 ],
top_logprobs: []
},
{
token: ' can',
logprob: -0.0004797665,
bytes: [ 32, 99, 97, 110 ],
top_logprobs: []
},
{
token: ' I',
logprob: -7.89631e-7,
bytes: [ 32, 73 ],
top_logprobs: []
},
{
token: ' assist',
logprob: -0.114006,
bytes: [
32, 97, 115,
115, 105, 115,
116
],
top_logprobs: []
},
{
token: ' you',
logprob: -4.3202e-7,
bytes: [ 32, 121, 111, 117 ],
top_logprobs: []
},
{
token: ' today',
logprob: -0.00004501419,
bytes: [ 32, 116, 111, 100, 97, 121 ],
top_logprobs: []
},
{
token: '?',
logprob: -0.000010206721,
bytes: [ 63 ],
top_logprobs: []
}
],
refusal: null
}
Tool callingβ
Tool calling with OpenAI models works in a similar to other models. Additionally, the following guides have some information especially relevant to OpenAI:
- How to: disable parallel tool calling
- How to: force a tool call
- How to: bind model-specific tool formats to a model.
strict: true
β
As of Aug 6, 2024, OpenAI supports a strict
argument when calling
tools that will enforce that the tool argument schema is respected by
the model. See more here:
https://platform.openai.com/docs/guides/function-calling.
@langchain/openai >= 0.2.6
Note: If strict: true
the tool definition will also be validated, and a subset of JSON schema are accepted. Crucially, schema cannot have optional args (those with default values). Read the full docs on what types of schema are supported here: https://platform.openai.com/docs/guides/structured-outputs/supported-schemas.
Hereβs an example with tool calling. Passing an extra strict: true
argument to .bindTools
will pass the param through to all tool
definitions:
import { ChatOpenAI } from "@langchain/openai";
import { tool } from "@langchain/core/tools";
import { z } from "zod";
const weatherTool = tool((_) => "no-op", {
name: "get_current_weather",
description: "Get the current weather",
schema: z.object({
location: z.string(),
}),
});
const llmWithStrictTrue = new ChatOpenAI({
model: "gpt-4o",
}).bindTools([weatherTool], {
strict: true,
tool_choice: weatherTool.name,
});
// Although the question is not about the weather, it will call the tool with the correct arguments
// because we passed `tool_choice` and `strict: true`.
const strictTrueResult = await llmWithStrictTrue.invoke(
"What is 127862 times 12898 divided by 2?"
);
console.dir(strictTrueResult.tool_calls, { depth: null });
[
{
name: 'get_current_weather',
args: { location: 'current' },
type: 'tool_call',
id: 'call_hVFyYNRwc6CoTgr9AQFQVjm9'
}
]
If you only want to apply this parameter to a select number of tools, you can also pass OpenAI formatted tool schemas directly:
import { zodToJsonSchema } from "zod-to-json-schema";
const toolSchema = {
type: "function",
function: {
name: "get_current_weather",
description: "Get the current weather",
strict: true,
parameters: zodToJsonSchema(
z.object({
location: z.string(),
})
),
},
};
const llmWithStrictTrueTools = new ChatOpenAI({
model: "gpt-4o",
}).bindTools([toolSchema], {
strict: true,
});
const weatherToolResult = await llmWithStrictTrueTools.invoke([
{
role: "user",
content: "What is the current weather in London?",
},
]);
weatherToolResult.tool_calls;
[
{
name: 'get_current_weather',
args: { location: 'London' },
type: 'tool_call',
id: 'call_EOSejtax8aYtqpchY8n8O82l'
}
]
Structured outputβ
We can also pass strict: true
to the
.withStructuredOutput()
.
Hereβs an example:
import { ChatOpenAI } from "@langchain/openai";
const traitSchema = z.object({
traits: z
.array(z.string())
.describe("A list of traits contained in the input"),
});
const structuredLlm = new ChatOpenAI({
model: "gpt-4o-mini",
}).withStructuredOutput(traitSchema, {
name: "extract_traits",
strict: true,
});
await structuredLlm.invoke([
{
role: "user",
content: `I am 6'5" tall and love fruit.`,
},
]);
{ traits: [ `6'5" tall`, 'love fruit' ] }
Responses APIβ
The below points apply to @langchain/openai>=0.4.5-rc.0
. Please see
here for a guide on
upgrading.
OpenAI supports a Responses API that is oriented toward building agentic applications. It includes a suite of built-in tools, including web and file search. It also supports management of conversation state, allowing you to continue a conversational thread without explicitly passing in previous messages.
ChatOpenAI
will route to the Responses API if one of these features is
used. You can also specify useResponsesApi: true
when instantiating
ChatOpenAI
.
Built-in toolsβ
Equipping ChatOpenAI
with built-in tools will ground its responses
with outside information, such as via context in files or the web. The
AIMessage generated from the model
will include information about the built-in tool invocation.
Web searchβ
To trigger a web search, pass {"type": "web_search_preview"}
to the
model as you would another tool.
You can also pass built-in tools as invocation params:
llm.invoke("...", { tools: [{ type: "web_search_preview" }] });
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({ model: "gpt-4o-mini" }).bindTools([
{ type: "web_search_preview" },
]);
await llm.invoke("What was a positive news story from today?");
Note that the response includes structured content blocks that include both the text of the response and OpenAI annotations citing its sources. The output message will also contain information from any tool invocations.
File searchβ
To trigger a file search, pass a file search tool to the model as you would another tool. You will need to populate an OpenAI-managed vector store and include the vector store ID in the tool definition. See OpenAI documentation for more details.
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({ model: "gpt-4o-mini" }).bindTools([
{ type: "file_search", vector_store_ids: ["vs..."] },
]);
await llm.invoke("Is deep research by OpenAI?");
As with web search, the response will include content blocks with citations. It will also include information from the built-in tool invocations.
Computer Useβ
ChatOpenAI supports the computer-use-preview
model, which is a
specialized model for the built-in computer use tool. To enable, pass a
computer use
tool as you
would pass another tool.
Currently tool outputs for computer use are present in
AIMessage.additional_kwargs.tool_outputs
. To reply to the computer use
tool call, you need to set
additional_kwargs.type: "computer_call_output"
while creating a
corresponding ToolMessage
.
See OpenAI documentation for more details.
import { AIMessage, ToolMessage } from "@langchain/core/messages";
import { ChatOpenAI } from "@langchain/openai";
import * as fs from "node:fs/promises";
const findComputerCall = (message: AIMessage) => {
const toolOutputs = message.additional_kwargs.tool_outputs as
| { type: "computer_call"; call_id: string; action: { type: string } }[]
| undefined;
return toolOutputs?.find((toolOutput) => toolOutput.type === "computer_call");
};
const llm = new ChatOpenAI({ model: "computer-use-preview" })
.bindTools([
{
type: "computer-preview",
display_width: 1024,
display_height: 768,
environment: "browser",
},
])
.bind({ truncation: "auto" });
let message = await llm.invoke("Check the latest OpenAI news on bing.com.");
const computerCall = findComputerCall(message);
if (computerCall) {
// Act on a computer call action
const screenshot = await fs.readFile("./screenshot.png", {
encoding: "base64",
});
message = await llm.invoke(
[
new ToolMessage({
additional_kwargs: { type: "computer_call_output" },
tool_call_id: computerCall.call_id,
content: [
{
type: "computer_screenshot",
image_url: `data:image/png;base64,${screenshot}`,
},
],
}),
],
{ previous_response_id: message.response_metadata["id"] }
);
}
Code interpreterβ
ChatOpenAI allows you to use the built-in code interpreter tool to support the sandboxed generation and execution of code.
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
model: "o4-mini",
useResponsesApi: true,
});
const llmWithTools = llm.bindToools([
{
type: "code_interpreter",
// Creates a new container
container: { type: "auto" },
},
]);
const response = await llmWithTools.invoke(
"Write and run code to answer the question: what is 3^3?"
);
Note that the above command creates a new container. We can re-use containers across calls by specifying an existing container ID.
const tool_outputs: Record<string, any>[] =
response.additional_kwargs.tool_outputs;
const container_id = tool_outputs[0].container_id;
const llmWithTools = llm.bindTools([
{
type: "code_interpreter",
// Re-uses container from the last call
container: container_id,
},
]);
Remote MCPβ
ChatOpenAI supports the built-in remote MCP tool that allows for model-generated calls to MCP servers to happen on OpenAI servers.
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
model: "o4-mini",
useResponsesApi: true,
});
const llmWithMcp = llm.bindTools([
{
type: "mcp",
server_label: "deepwiki",
server_url: "https://mcp.deepwiki.com/mcp",
require_approval: "never",
},
]);
const response = await llmWithMcp.invoke(
"What transport protocols does the 2025-03-26 version of the MCP spec (modelcontextprotocol/modelcontextprotocol) support?"
);
MCP Approvals
When instructed, OpenAI will request approval before making calls to a remote MCP server.
In the above command, we instructed the model to never require approval. We can also configure the model to always request approval, or to always request approval for specific tools:
...
const llmWithMcp = llm.bindTools([
{
type: "mcp",
server_label: "deepwiki",
server_url: "https://mcp.deepwiki.com/mcp",
require_approval: {
always: {
tool_names: ["read_wiki_structure"],
},
},
},
]);
const response = await llmWithMcp.invoke(
"What transport protocols does the 2025-03-26 version of the MCP spec (modelcontextprotocol/modelcontextprotocol) support?"
);
With this configuration, responses can contain tool outputs typed as
mcp_approval_request
. To submit approvals for an approval request, you
can structure it into a content block in a followup message:
const approvals = [];
if (Array.isArray(response.additional_kwargs.tool_outputs)) {
for (const content of response.additional_kwargs.tool_outputs) {
if (content.type === "mcp_approval_request") {
approvals.push({
type: "mcp_approval_response",
approval_request_id: content.id,
approve: true,
});
}
}
}
const nextResponse = await model.invoke([
response,
new HumanMessage({ content: approvals }),
]);