IBM watsonx.ai
This will help you getting started with IBM watsonx.ai chat
models. For detailed documentation of all
IBM watsonx.ai
features and configurations head to the IBM
watsonx.ai.
Overview
Integration details
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatWatsonx | @langchain/community | ❌ | ✅ | ✅ |
Model features
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|
✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
Setup
To access IBM watsonx.ai models you’ll need to create a/an IBM
watsonx.ai account, get an API key, and install the
@langchain/community
integration package.
Credentials
Head to IBM Cloud to sign up to IBM watsonx.ai and generate an API key or provide any other authentication form as presented below.
IAM authentication
export WATSONX_AI_AUTH_TYPE=iam
export WATSONX_AI_APIKEY=<YOUR-APIKEY>
Bearer token authentication
export WATSONX_AI_AUTH_TYPE=bearertoken
export WATSONX_AI_BEARER_TOKEN=<YOUR-BEARER-TOKEN>
IBM watsonx.ai software authentication
export WATSONX_AI_AUTH_TYPE=cp4d
export WATSONX_AI_USERNAME=<YOUR_USERNAME>
export WATSONX_AI_PASSWORD=<YOUR_PASSWORD>
export WATSONX_AI_URL=<URL>
Once these are places in your enviromental variables and object is initialized authentication will proceed automatically.
Authentication can also be accomplished by passing these values as parameters to a new instance.
IAM authentication
import { WatsonxLLM } from "@langchain/community/llms/ibm";
const props = {
version: "YYYY-MM-DD",
serviceUrl: "<SERVICE_URL>",
projectId: "<PROJECT_ID>",
watsonxAIAuthType: "iam",
watsonxAIApikey: "<YOUR-APIKEY>",
};
const instance = new WatsonxLLM(props);
Bearer token authentication
import { WatsonxLLM } from "@langchain/community/llms/ibm";
const props = {
version: "YYYY-MM-DD",
serviceUrl: "<SERVICE_URL>",
projectId: "<PROJECT_ID>",
watsonxAIAuthType: "bearertoken",
watsonxAIBearerToken: "<YOUR-BEARERTOKEN>",
};
const instance = new WatsonxLLM(props);
IBM watsonx.ai software authentication
import { WatsonxLLM } from "@langchain/community/llms/ibm";
const props = {
version: "YYYY-MM-DD",
serviceUrl: "<SERVICE_URL>",
projectId: "<PROJECT_ID>",
watsonxAIAuthType: "cp4d",
watsonxAIUsername: "<YOUR-USERNAME>",
watsonxAIPassword: "<YOUR-PASSWORD>",
watsonxAIUrl: "<url>",
};
const instance = new WatsonxLLM(props);
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGSMITH_TRACING="true"
# export LANGSMITH_API_KEY="your-api-key"
Installation
The LangChain IBM watsonx.ai integration lives in the
@langchain/community
package:
- npm
- yarn
- pnpm
npm i @langchain/community @langchain/core
yarn add @langchain/community @langchain/core
pnpm add @langchain/community @langchain/core
Instantiation
Now we can instantiate our model object and generate chat completions:
import { ChatWatsonx } from "@langchain/community/chat_models/ibm";
const props = {
maxTokens: 200,
temperature: 0.5,
};
const instance = new ChatWatsonx({
version: "YYYY-MM-DD",
serviceUrl: process.env.API_URL,
projectId: "<PROJECT_ID>",
spaceId: "<SPACE_ID>",
model: "<MODEL_ID>",
...props,
});
Note:
- You must provide
spaceId
orprojectId
in order to proceed. - Depending on the region of your provisioned service instance, use correct serviceUrl.
Invocation
const aiMsg = await instance.invoke([
{
role: "system",
content:
"You are a helpful assistant that translates English to French. Translate the user sentence.",
},
{
role: "user",
content: "I love programming.",
},
]);
console.log(aiMsg);
AIMessage {
"id": "chat-c5341b2062dc42f091e5ae2558e905e3",
"content": " J'adore la programmation.",
"additional_kwargs": {
"tool_calls": []
},
"response_metadata": {
"tokenUsage": {
"completion_tokens": 10,
"prompt_tokens": 28,
"total_tokens": 38
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 28,
"output_tokens": 10,
"total_tokens": 38
}
}
console.log(aiMsg.content);
J'adore la programmation.
Chaining
We can chain our model with a prompt template like so:
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(instance);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"id": "chat-c5c2c08d3c984254acc48225c39c6a08",
"content": " Ich liebe Programmieren.",
"additional_kwargs": {
"tool_calls": []
},
"response_metadata": {
"tokenUsage": {
"completion_tokens": 8,
"prompt_tokens": 22,
"total_tokens": 30
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 22,
"output_tokens": 8,
"total_tokens": 30
}
}
Streaming the Model output
import { HumanMessage, SystemMessage } from "@langchain/core/messages";
const messages = [
new SystemMessage(
"You are a helpful assistant which telling short-info about provided topic."
),
new HumanMessage("moon"),
];
const stream = await instance.stream(messages);
for await (const chunk of stream) {
console.log(chunk);
}
The
Moon
is
Earth
'
s
only
natural
satellite
and
Tool calling
import { tool } from "@langchain/core/tools";
import { z } from "zod";
const calculatorSchema = z.object({
operation: z
.enum(["add", "subtract", "multiply", "divide"])
.describe("The type of operation to execute."),
number1: z.number().describe("The first number to operate on."),
number2: z.number().describe("The second number to operate on."),
});
const calculatorTool = tool(
async ({ operation, number1, number2 }) => {
if (operation === "add") {
return `${number1 + number2}`;
} else if (operation === "subtract") {
return `${number1 - number2}`;
} else if (operation === "multiply") {
return `${number1 * number2}`;
} else if (operation === "divide") {
return `${number1 / number2}`;
} else {
throw new Error("Invalid operation.");
}
},
{
name: "calculator",
description: "Can perform mathematical operations.",
schema: calculatorSchema,
}
);
const instanceWithTools = instance.bindTools([calculatorTool]);
const res = await instanceWithTools.invoke("What is 3 * 12");
console.log(res);
AIMessage {
"id": "chat-d2214d0bdb794483a213b3211cf0d819",
"content": "",
"additional_kwargs": {
"tool_calls": [
{
"id": "chatcmpl-tool-257f3d39532141b89178c2120f81f0cb",
"type": "function",
"function": "[Object]"
}
]
},
"response_metadata": {
"tokenUsage": {
"completion_tokens": 38,
"prompt_tokens": 177,
"total_tokens": 215
},
"finish_reason": "tool_calls"
},
"tool_calls": [
{
"name": "calculator",
"args": {
"number1": 3,
"number2": 12,
"operation": "multiply"
},
"type": "tool_call",
"id": "chatcmpl-tool-257f3d39532141b89178c2120f81f0cb"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 177,
"output_tokens": 38,
"total_tokens": 215
}
}
API reference
For detailed documentation of all IBM watsonx.ai
features and
configurations head to the API reference: API
docs
Related
- Chat model conceptual guide
- Chat model how-to guides