Skip to main content

IBM watsonx.ai

This will help you getting started with IBM watsonx.ai chat models. For detailed documentation of all IBM watsonx.ai features and configurations head to the IBM watsonx.ai.

Overview

Integration details

ClassPackageLocalSerializablePY supportPackage downloadsPackage latest
ChatWatsonx@langchain/communityNPM - DownloadsNPM - Version

Model features

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingToken usageLogprobs

Setup

To access IBM watsonx.ai models you’ll need to create a/an IBM watsonx.ai account, get an API key, and install the @langchain/community integration package.

Credentials

Head to IBM Cloud to sign up to IBM watsonx.ai and generate an API key or provide any other authentication form as presented below.

IAM authentication

export WATSONX_AI_AUTH_TYPE=iam
export WATSONX_AI_APIKEY=<YOUR-APIKEY>

Bearer token authentication

export WATSONX_AI_AUTH_TYPE=bearertoken
export WATSONX_AI_BEARER_TOKEN=<YOUR-BEARER-TOKEN>

CP4D authentication

export WATSONX_AI_AUTH_TYPE=cp4d
export WATSONX_AI_USERNAME=<YOUR_USERNAME>
export WATSONX_AI_PASSWORD=<YOUR_PASSWORD>
export WATSONX_AI_URL=<URL>

Once these are places in your enviromental variables and object is initialized authentication will proceed automatically.

Authentication can also be accomplished by passing these values as parameters to a new instance.

IAM authentication

import { WatsonxLLM } from "@langchain/community/llms/ibm";

const props = {
version: "YYYY-MM-DD",
serviceUrl: "<SERVICE_URL>",
projectId: "<PROJECT_ID>",
watsonxAIAuthType: "iam",
watsonxAIApikey: "<YOUR-APIKEY>",
};
const instance = new WatsonxLLM(props);

Bearer token authentication

import { WatsonxLLM } from "@langchain/community/llms/ibm";

const props = {
version: "YYYY-MM-DD",
serviceUrl: "<SERVICE_URL>",
projectId: "<PROJECT_ID>",
watsonxAIAuthType: "bearertoken",
watsonxAIBearerToken: "<YOUR-BEARERTOKEN>",
};
const instance = new WatsonxLLM(props);

CP4D authentication

import { WatsonxLLM } from "@langchain/community/llms/ibm";

const props = {
version: "YYYY-MM-DD",
serviceUrl: "<SERVICE_URL>",
projectId: "<PROJECT_ID>",
watsonxAIAuthType: "cp4d",
watsonxAIUsername: "<YOUR-USERNAME>",
watsonxAIPassword: "<YOUR-PASSWORD>",
watsonxAIUrl: "<url>",
};
const instance = new WatsonxLLM(props);

If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:

# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"

Installation

The LangChain IBM watsonx.ai integration lives in the @langchain/community package:

yarn add @langchain/community @langchain/core

Instantiation

Now we can instantiate our model object and generate chat completions:

import { ChatWatsonx } from "@langchain/community/chat_models/ibm";
const props = {
maxTokens: 200,
temperature: 0.5,
};

const instance = new ChatWatsonx({
version: "YYYY-MM-DD",
serviceUrl: process.env.API_URL,
projectId: "<PROJECT_ID>",
spaceId: "<SPACE_ID>",
model: "<MODEL_ID>",
...props,
});

Note:

  • You must provide spaceId or projectId in order to proceed.
  • Depending on the region of your provisioned service instance, use correct serviceUrl.

Invocation

const aiMsg = await instance.invoke([
{
role: "system",
content:
"You are a helpful assistant that translates English to French. Translate the user sentence.",
},
{
role: "user",
content: "I love programming.",
},
]);
console.log(aiMsg);
AIMessage {
"id": "chat-c5341b2062dc42f091e5ae2558e905e3",
"content": " J'adore la programmation.",
"additional_kwargs": {
"tool_calls": []
},
"response_metadata": {
"tokenUsage": {
"completion_tokens": 10,
"prompt_tokens": 28,
"total_tokens": 38
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 28,
"output_tokens": 10,
"total_tokens": 38
}
}
console.log(aiMsg.content);
 J'adore la programmation.

Chaining

We can chain our model with a prompt template like so:

import { ChatPromptTemplate } from "@langchain/core/prompts";

const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(instance);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"id": "chat-c5c2c08d3c984254acc48225c39c6a08",
"content": " Ich liebe Programmieren.",
"additional_kwargs": {
"tool_calls": []
},
"response_metadata": {
"tokenUsage": {
"completion_tokens": 8,
"prompt_tokens": 22,
"total_tokens": 30
},
"finish_reason": "stop"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 22,
"output_tokens": 8,
"total_tokens": 30
}
}

Streaming the Model output

import { HumanMessage, SystemMessage } from "@langchain/core/messages";

const messages = [
new SystemMessage(
"You are a helpful assistant which telling short-info about provided topic."
),
new HumanMessage("moon"),
];
const stream = await instance.stream(messages);
for await (const chunk of stream) {
console.log(chunk);
}
 The
Moon
is
Earth
'
s
only
natural
satellite
and

Tool calling

import { tool } from "@langchain/core/tools";
import { z } from "zod";

const calculatorSchema = z.object({
operation: z
.enum(["add", "subtract", "multiply", "divide"])
.describe("The type of operation to execute."),
number1: z.number().describe("The first number to operate on."),
number2: z.number().describe("The second number to operate on."),
});

const calculatorTool = tool(
async ({ operation, number1, number2 }) => {
if (operation === "add") {
return `${number1 + number2}`;
} else if (operation === "subtract") {
return `${number1 - number2}`;
} else if (operation === "multiply") {
return `${number1 * number2}`;
} else if (operation === "divide") {
return `${number1 / number2}`;
} else {
throw new Error("Invalid operation.");
}
},
{
name: "calculator",
description: "Can perform mathematical operations.",
schema: calculatorSchema,
}
);

const instanceWithTools = instance.bindTools([calculatorTool]);

const res = await instanceWithTools.invoke("What is 3 * 12");
console.log(res);
AIMessage {
"id": "chat-d2214d0bdb794483a213b3211cf0d819",
"content": "",
"additional_kwargs": {
"tool_calls": [
{
"id": "chatcmpl-tool-257f3d39532141b89178c2120f81f0cb",
"type": "function",
"function": "[Object]"
}
]
},
"response_metadata": {
"tokenUsage": {
"completion_tokens": 38,
"prompt_tokens": 177,
"total_tokens": 215
},
"finish_reason": "tool_calls"
},
"tool_calls": [
{
"name": "calculator",
"args": {
"number1": 3,
"number2": 12,
"operation": "multiply"
},
"type": "tool_call",
"id": "chatcmpl-tool-257f3d39532141b89178c2120f81f0cb"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 177,
"output_tokens": 38,
"total_tokens": 215
}
}

API reference

For detailed documentation of all IBM watsonx.ai features and configurations head to the API reference: API docs


Was this page helpful?


You can also leave detailed feedback on GitHub.