ChatAnthropic
Anthropic is an AI safety and research company. They are the creator of Claude.
This will help you getting started with Anthropic chat
models. For detailed documentation of all
ChatAnthropic
features and configurations head to the API
reference.
Overview
Integration details
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatAnthropic | @langchain/anthropic | ❌ | ✅ | ✅ |
Model features
See the links in the table headers below for guides on how to use specific features.
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|
✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
Setup
You’ll need to sign up and obtain an Anthropic API
key, and install the @langchain/anthropic
integration package.
Credentials
Head to Anthropic’s website to sign up to
Anthropic and generate an API key. Once you’ve done this set the
ANTHROPIC_API_KEY
environment variable:
export ANTHROPIC_API_KEY="your-api-key"
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGSMITH_TRACING="true"
# export LANGSMITH_API_KEY="your-api-key"
Installation
The LangChain ChatAnthropic
integration lives in the
@langchain/anthropic
package:
- npm
- yarn
- pnpm
npm i @langchain/anthropic @langchain/core
yarn add @langchain/anthropic @langchain/core
pnpm add @langchain/anthropic @langchain/core
Instantiation
Now we can instantiate our model object and generate chat completions:
import { ChatAnthropic } from "@langchain/anthropic";
const llm = new ChatAnthropic({
model: "claude-3-haiku-20240307",
temperature: 0,
maxTokens: undefined,
maxRetries: 2,
// other params...
});
Invocation
const aiMsg = await llm.invoke([
[
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
],
["human", "I love programming."],
]);
aiMsg;
AIMessage {
"id": "msg_013WBXXiggy6gMbAUY6NpsuU",
"content": "Voici la traduction en français :\n\nJ'adore la programmation.",
"additional_kwargs": {
"id": "msg_013WBXXiggy6gMbAUY6NpsuU",
"type": "message",
"role": "assistant",
"model": "claude-3-haiku-20240307",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 29,
"output_tokens": 20
}
},
"response_metadata": {
"id": "msg_013WBXXiggy6gMbAUY6NpsuU",
"model": "claude-3-haiku-20240307",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 29,
"output_tokens": 20
},
"type": "message",
"role": "assistant"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 29,
"output_tokens": 20,
"total_tokens": 49
}
}
console.log(aiMsg.content);
Voici la traduction en français :
J'adore la programmation.
Chaining
We can chain our model with a prompt template like so:
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"id": "msg_01Ca52fpd1mcGRhH4spzAWr4",
"content": "Ich liebe das Programmieren.",
"additional_kwargs": {
"id": "msg_01Ca52fpd1mcGRhH4spzAWr4",
"type": "message",
"role": "assistant",
"model": "claude-3-haiku-20240307",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 23,
"output_tokens": 11
}
},
"response_metadata": {
"id": "msg_01Ca52fpd1mcGRhH4spzAWr4",
"model": "claude-3-haiku-20240307",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 23,
"output_tokens": 11
},
"type": "message",
"role": "assistant"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 23,
"output_tokens": 11,
"total_tokens": 34
}
}
Content blocks
One key difference to note between Anthropic models and most others is
that the contents of a single Anthropic AI message can either be a
single string or a list of content blocks. For example when an
Anthropic model calls a tool, the tool
invocation is part of the message content (as well as being exposed in
the standardized AIMessage.tool_calls
field):
import { ChatAnthropic } from "@langchain/anthropic";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";
const calculatorSchema = z.object({
operation: z
.enum(["add", "subtract", "multiply", "divide"])
.describe("The type of operation to execute."),
number1: z.number().describe("The first number to operate on."),
number2: z.number().describe("The second number to operate on."),
});
const calculatorTool = {
name: "calculator",
description: "A simple calculator tool",
input_schema: zodToJsonSchema(calculatorSchema),
};
const toolCallingLlm = new ChatAnthropic({
model: "claude-3-haiku-20240307",
}).bindTools([calculatorTool]);
const toolPrompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant who always needs to use a calculator.",
],
["human", "{input}"],
]);
// Chain your prompt and model together
const toolCallChain = toolPrompt.pipe(toolCallingLlm);
await toolCallChain.invoke({
input: "What is 2 + 2?",
});
AIMessage {
"id": "msg_01DZGs9DyuashaYxJ4WWpWUP",
"content": [
{
"type": "text",
"text": "Here is the calculation for 2 + 2:"
},
{
"type": "tool_use",
"id": "toolu_01SQXBamkBr6K6NdHE7GWwF8",
"name": "calculator",
"input": {
"number1": 2,
"number2": 2,
"operation": "add"
}
}
],
"additional_kwargs": {
"id": "msg_01DZGs9DyuashaYxJ4WWpWUP",
"type": "message",
"role": "assistant",
"model": "claude-3-haiku-20240307",
"stop_reason": "tool_use",
"stop_sequence": null,
"usage": {
"input_tokens": 449,
"output_tokens": 100
}
},
"response_metadata": {
"id": "msg_01DZGs9DyuashaYxJ4WWpWUP",
"model": "claude-3-haiku-20240307",
"stop_reason": "tool_use",
"stop_sequence": null,
"usage": {
"input_tokens": 449,
"output_tokens": 100
},
"type": "message",
"role": "assistant"
},
"tool_calls": [
{
"name": "calculator",
"args": {
"number1": 2,
"number2": 2,
"operation": "add"
},
"id": "toolu_01SQXBamkBr6K6NdHE7GWwF8",
"type": "tool_call"
}
],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 449,
"output_tokens": 100,
"total_tokens": 549
}
}
Custom headers
You can pass custom headers in your requests like this:
import { ChatAnthropic } from "@langchain/anthropic";
const llmWithCustomHeaders = new ChatAnthropic({
model: "claude-3-sonnet-20240229",
maxTokens: 1024,
clientOptions: {
defaultHeaders: {
"X-Api-Key": process.env.ANTHROPIC_API_KEY,
},
},
});
await llmWithCustomHeaders.invoke("Why is the sky blue?");
AIMessage {
"id": "msg_019z4nWpShzsrbSHTWXWQh6z",
"content": "The sky appears blue due to a phenomenon called Rayleigh scattering. Here's a brief explanation:\n\n1) Sunlight is made up of different wavelengths of visible light, including all the colors of the rainbow.\n\n2) As sunlight passes through the atmosphere, the gases (mostly nitrogen and oxygen) cause the shorter wavelengths of light, such as violet and blue, to be scattered more easily than the longer wavelengths like red and orange.\n\n3) This scattering of the shorter blue wavelengths occurs in all directions by the gas molecules in the atmosphere.\n\n4) Our eyes are more sensitive to the scattered blue light than the scattered violet light, so we perceive the sky as having a blue color.\n\n5) The scattering is more pronounced for light traveling over longer distances through the atmosphere. This is why the sky appears even darker blue when looking towards the horizon.\n\nSo in essence, the selective scattering of the shorter blue wavelengths of sunlight by the gases in the atmosphere is what causes the sky to appear blue to our eyes during the daytime.",
"additional_kwargs": {
"id": "msg_019z4nWpShzsrbSHTWXWQh6z",
"type": "message",
"role": "assistant",
"model": "claude-3-sonnet-20240229",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 13,
"output_tokens": 236
}
},
"response_metadata": {
"id": "msg_019z4nWpShzsrbSHTWXWQh6z",
"model": "claude-3-sonnet-20240229",
"stop_reason": "end_turn",
"stop_sequence": null,
"usage": {
"input_tokens": 13,
"output_tokens": 236
},
"type": "message",
"role": "assistant"
},
"tool_calls": [],
"invalid_tool_calls": [],
"usage_metadata": {
"input_tokens": 13,
"output_tokens": 236,
"total_tokens": 249
}
}
Prompt caching
This feature is currently in beta.
Anthropic supports caching parts of your prompt in order to reduce costs for use-cases that require long context. You can cache tools and both entire messages and individual blocks.
The initial request containing one or more blocks or tool definitions
with a "cache_control": { "type": "ephemeral" }
field will
automatically cache that part of the prompt. This initial caching step
will cost extra, but subsequent requests will be billed at a reduced
rate. The cache has a lifetime of 5 minutes, but this is refereshed each
time the cache is hit.
There is also currently a minimum cacheable prompt length, which varies according to model. You can see this information here.
This currently requires you to initialize your model with a beta header. Here’s an example of caching part of a system message that contains the LangChain conceptual docs:
let CACHED_TEXT = "...";
import { ChatAnthropic } from "@langchain/anthropic";
import { HumanMessage, SystemMessage } from "@langchain/core/messages";
const modelWithCaching = new ChatAnthropic({
model: "claude-3-haiku-20240307",
clientOptions: {
defaultHeaders: {
"anthropic-beta": "prompt-caching-2024-07-31",
},
},
});
const LONG_TEXT = `You are a pirate. Always respond in pirate dialect.
Use the following as context when answering questions:
${CACHED_TEXT}`;
const messages = [
new SystemMessage({
content: [
{
type: "text",
text: LONG_TEXT,
// Tell Anthropic to cache this block
cache_control: { type: "ephemeral" },
},
],
}),
new HumanMessage({
content: "What types of messages are supported in LangChain?",
}),
];
const res = await modelWithCaching.invoke(messages);
console.log("USAGE:", res.response_metadata.usage);
USAGE: {
input_tokens: 19,
cache_creation_input_tokens: 2925,
cache_read_input_tokens: 0,
output_tokens: 327
}
We can see that there’s a new field called cache_creation_input_tokens
in the raw usage field returned from Anthropic.
If we use the same messages again, we can see that the long text’s input tokens are read from the cache:
const res2 = await modelWithCaching.invoke(messages);
console.log("USAGE:", res2.response_metadata.usage);
USAGE: {
input_tokens: 19,
cache_creation_input_tokens: 0,
cache_read_input_tokens: 2925,
output_tokens: 250
}
Tool caching
You can also cache tools by setting the same
"cache_control": { "type": "ephemeral" }
within a tool definition.
This currently requires you to bind a tool in Anthropic’s raw tool
format
Here’s an example:
const SOME_LONG_DESCRIPTION = "...";
// Tool in Anthropic format
const anthropicTools = [
{
name: "get_weather",
description: SOME_LONG_DESCRIPTION,
input_schema: {
type: "object",
properties: {
location: {
type: "string",
description: "Location to get the weather for",
},
unit: {
type: "string",
description: "Temperature unit to return",
},
},
required: ["location"],
},
// Tell Anthropic to cache this tool
cache_control: { type: "ephemeral" },
},
];
const modelWithCachedTools = modelWithCaching.bindTools(anthropicTools);
await modelWithCachedTools.invoke("what is the weather in SF?");
For more on how prompt caching works, see Anthropic’s docs.
Custom clients
Anthropic models may be hosted on cloud services such as Google
Vertex that rely
on a different underlying client with the same interface as the primary
Anthropic client. You can access these services by providing a
createClient
method that returns an initialized instance of an
Anthropic client. Here’s an example:
import { AnthropicVertex } from "@anthropic-ai/vertex-sdk";
const customClient = new AnthropicVertex();
const modelWithCustomClient = new ChatAnthropic({
modelName: "claude-3-sonnet@20240229",
maxRetries: 0,
createClient: () => customClient,
});
await modelWithCustomClient.invoke([{ role: "user", content: "Hello!" }]);
API reference
For detailed documentation of all ChatAnthropic features and configurations head to the API reference: https://api.js.langchain.com/classes/langchain_anthropic.ChatAnthropic.html
Related
- Chat model conceptual guide
- Chat model how-to guides