TavilySearchResults (Deprecated)
This tool has been deprecated. Please use the
TavilySearch tool in the @langchain/tavily
package,
instead.
Tavily Search is a robust search API tailored specifically for LLM Agents. It seamlessly integrates with diverse data sources to ensure a superior, relevant search experience.
This guide provides a quick overview for getting started with the Tavily tool. For a complete breakdown of the Tavily tool, you can find more detailed documentation in the API reference.
Overview
Integration details
Class | Package | PY support | Package latest |
---|---|---|---|
TavilySearchResults | @langchain/community | ✅ | ![]() |
Setup
The integration lives in the @langchain/community
package, which you
can install as shown below:
- npm
- yarn
- pnpm
npm i @langchain/communityv @langchain/core
yarn add @langchain/communityv @langchain/core
pnpm add @langchain/communityv @langchain/core
Credentials
Set up an API key here and set it as an
environment variable named TAVILY_API_KEY
.
process.env.TAVILY_API_KEY = "YOUR_API_KEY";
It’s also helpful (but not needed) to set up LangSmith for best-in-class observability:
process.env.LANGSMITH_TRACING = "true";
process.env.LANGSMITH_API_KEY = "your-api-key";
Instantiation
You can import and instantiate an instance of the TavilySearchResults
tool like this:
import { TavilySearchResults } from "@langchain/community/tools/tavily_search";
const tool = new TavilySearchResults({
maxResults: 2,
// ...
});
Invocation
Invoke directly with args
You can invoke the tool directly like this:
await tool.invoke({
input: "what is the current weather in SF?",
});
Invoke with ToolCall
We can also invoke the tool with a model-generated ToolCall
, in which
case a ToolMessage
will be returned:
// This is usually generated by a model, but we'll create a tool call directly for demo purposes.
const modelGeneratedToolCall = {
args: {
query: "what is the current weather in SF?",
},
id: "1",
name: tool.name,
type: "tool_call",
};
await tool.invoke(modelGeneratedToolCall);
Chaining
We can use our tool in a chain by first binding it to a tool-calling model and then calling it:
Pick your chat model:
- Groq
- OpenAI
- Anthropic
- FireworksAI
- MistralAI
- VertexAI
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/groq
yarn add @langchain/groq
pnpm add @langchain/groq
Add environment variables
GROQ_API_KEY=your-api-key
Instantiate the model
import { ChatGroq } from "@langchain/groq";
const llm = new ChatGroq({
model: "llama-3.3-70b-versatile",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/openai
yarn add @langchain/openai
pnpm add @langchain/openai
Add environment variables
OPENAI_API_KEY=your-api-key
Instantiate the model
import { ChatOpenAI } from "@langchain/openai";
const llm = new ChatOpenAI({
model: "gpt-4o-mini",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/anthropic
yarn add @langchain/anthropic
pnpm add @langchain/anthropic
Add environment variables
ANTHROPIC_API_KEY=your-api-key
Instantiate the model
import { ChatAnthropic } from "@langchain/anthropic";
const llm = new ChatAnthropic({
model: "claude-3-5-sonnet-20240620",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
Add environment variables
FIREWORKS_API_KEY=your-api-key
Instantiate the model
import { ChatFireworks } from "@langchain/community/chat_models/fireworks";
const llm = new ChatFireworks({
model: "accounts/fireworks/models/llama-v3p1-70b-instruct",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/mistralai
yarn add @langchain/mistralai
pnpm add @langchain/mistralai
Add environment variables
MISTRAL_API_KEY=your-api-key
Instantiate the model
import { ChatMistralAI } from "@langchain/mistralai";
const llm = new ChatMistralAI({
model: "mistral-large-latest",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/google-vertexai
yarn add @langchain/google-vertexai
pnpm add @langchain/google-vertexai
Add environment variables
GOOGLE_APPLICATION_CREDENTIALS=credentials.json
Instantiate the model
import { ChatVertexAI } from "@langchain/google-vertexai";
const llm = new ChatVertexAI({
model: "gemini-1.5-flash",
temperature: 0
});
import { HumanMessage } from "@langchain/core/messages";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { RunnableLambda } from "@langchain/core/runnables";
const prompt = ChatPromptTemplate.fromMessages([
["system", "You are a helpful assistant."],
["placeholder", "{messages}"],
]);
const llmWithTools = llm.bindTools([tool]);
const chain = prompt.pipe(llmWithTools);
const toolChain = RunnableLambda.from(async (userInput: string, config) => {
const humanMessage = new HumanMessage(userInput);
const aiMsg = await chain.invoke(
{
messages: [new HumanMessage(userInput)],
},
config
);
const toolMsgs = await tool.batch(aiMsg.tool_calls, config);
return chain.invoke(
{
messages: [humanMessage, aiMsg, ...toolMsgs],
},
config
);
});
const toolChainResult = await toolChain.invoke(
"what is the current weather in sf?"
);
const { tool_calls, content } = toolChainResult;
console.log(
"AIMessage",
JSON.stringify(
{
tool_calls,
content,
},
null,
2
)
);
Agents
For guides on how to use LangChain tools in agents, see the LangGraph.js docs.
API reference
For detailed documentation of all TavilySearchResults
features and
configurations head to the API reference:
Related
Tool conceptual guide
Tool how-to guides