Skip to main content

TavilySearchResults (Deprecated)

Deprecation Notice

This tool has been deprecated. Please use the TavilySearch tool in the @langchain/tavily package, instead.

Tavily Search is a robust search API tailored specifically for LLM Agents. It seamlessly integrates with diverse data sources to ensure a superior, relevant search experience.

This guide provides a quick overview for getting started with the Tavily tool. For a complete breakdown of the Tavily tool, you can find more detailed documentation in the API reference.

Overview

Integration details

ClassPackagePY supportPackage latest
TavilySearchResults@langchain/communityNPM - Version

Setup

The integration lives in the @langchain/community package, which you can install as shown below:

yarn add @langchain/communityv @langchain/core

Credentials

Set up an API key here and set it as an environment variable named TAVILY_API_KEY.

process.env.TAVILY_API_KEY = "YOUR_API_KEY";

It’s also helpful (but not needed) to set up LangSmith for best-in-class observability:

process.env.LANGSMITH_TRACING = "true";
process.env.LANGSMITH_API_KEY = "your-api-key";

Instantiation

You can import and instantiate an instance of the TavilySearchResults tool like this:

import { TavilySearchResults } from "@langchain/community/tools/tavily_search";

const tool = new TavilySearchResults({
maxResults: 2,
// ...
});

Invocation

Invoke directly with args

You can invoke the tool directly like this:

await tool.invoke({
input: "what is the current weather in SF?",
});

Invoke with ToolCall

We can also invoke the tool with a model-generated ToolCall, in which case a ToolMessage will be returned:

// This is usually generated by a model, but we'll create a tool call directly for demo purposes.
const modelGeneratedToolCall = {
args: {
query: "what is the current weather in SF?",
},
id: "1",
name: tool.name,
type: "tool_call",
};

await tool.invoke(modelGeneratedToolCall);

Chaining

We can use our tool in a chain by first binding it to a tool-calling model and then calling it:

Pick your chat model:

Install dependencies

yarn add @langchain/groq 

Add environment variables

GROQ_API_KEY=your-api-key

Instantiate the model

import { ChatGroq } from "@langchain/groq";

const llm = new ChatGroq({
model: "llama-3.3-70b-versatile",
temperature: 0
});
import { HumanMessage } from "@langchain/core/messages";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { RunnableLambda } from "@langchain/core/runnables";

const prompt = ChatPromptTemplate.fromMessages([
["system", "You are a helpful assistant."],
["placeholder", "{messages}"],
]);

const llmWithTools = llm.bindTools([tool]);

const chain = prompt.pipe(llmWithTools);

const toolChain = RunnableLambda.from(async (userInput: string, config) => {
const humanMessage = new HumanMessage(userInput);
const aiMsg = await chain.invoke(
{
messages: [new HumanMessage(userInput)],
},
config
);
const toolMsgs = await tool.batch(aiMsg.tool_calls, config);
return chain.invoke(
{
messages: [humanMessage, aiMsg, ...toolMsgs],
},
config
);
});

const toolChainResult = await toolChain.invoke(
"what is the current weather in sf?"
);
const { tool_calls, content } = toolChainResult;

console.log(
"AIMessage",
JSON.stringify(
{
tool_calls,
content,
},
null,
2
)
);

Agents

For guides on how to use LangChain tools in agents, see the LangGraph.js docs.

API reference

For detailed documentation of all TavilySearchResults features and configurations head to the API reference:

https://api.js.langchain.com/classes/langchain_community_tools_tavily_search.TavilySearchResults.html


Was this page helpful?


You can also leave detailed feedback on GitHub.