Functionality related to Google Cloud Platform
Chat models
Gemini Models
Access Gemini models such as gemini-1.5-pro
and gemini-1.5-flex
through the ChatGoogleGenerativeAI
,
or if using VertexAI, via the ChatVertexAI
class.
- GenAI
- VertexAI
- npm
- Yarn
- pnpm
npm install @langchain/google-genai @langchain/core
yarn add @langchain/google-genai @langchain/core
pnpm add @langchain/google-genai @langchain/core
Configure your API key.
export GOOGLE_API_KEY=your-api-key
import { ChatGoogleGenerativeAI } from "@langchain/google-genai";
const model = new ChatGoogleGenerativeAI({
model: "gemini-pro",
maxOutputTokens: 2048,
});
// Batch and stream are also supported
const res = await model.invoke([
[
"human",
"What would be a good company name for a company that makes colorful socks?",
],
]);
Gemini vision models support image inputs when providing a single human message. For example:
const visionModel = new ChatGoogleGenerativeAI({
model: "gemini-pro-vision",
maxOutputTokens: 2048,
});
const image = fs.readFileSync("./hotdog.jpg").toString("base64");
const input2 = [
new HumanMessage({
content: [
{
type: "text",
text: "Describe the following image.",
},
{
type: "image_url",
image_url: `data:image/png;base64,${image}`,
},
],
}),
];
const res = await visionModel.invoke(input2);
Click here for the @langchain/google-genai
specific integration docs
- npm
- Yarn
- pnpm
npm install @langchain/google-vertexai @langchain/core
yarn add @langchain/google-vertexai @langchain/core
pnpm add @langchain/google-vertexai @langchain/core
Then, you'll need to add your service account credentials, either directly as a GOOGLE_VERTEX_AI_WEB_CREDENTIALS
environment variable:
GOOGLE_VERTEX_AI_WEB_CREDENTIALS={"type":"service_account","project_id":"YOUR_PROJECT-12345",...}
or as a file path:
GOOGLE_VERTEX_AI_WEB_CREDENTIALS_FILE=/path/to/your/credentials.json
import { ChatVertexAI } from "@langchain/google-vertexai";
// Or, if using the web entrypoint:
// import { ChatVertexAI } from "@langchain/google-vertexai-web";
const model = new ChatVertexAI({
model: "gemini-1.0-pro",
maxOutputTokens: 2048,
});
// Batch and stream are also supported
const res = await model.invoke([
[
"human",
"What would be a good company name for a company that makes colorful socks?",
],
]);
Gemini vision models support image inputs when providing a single human message. For example:
const visionModel = new ChatVertexAI({
model: "gemini-pro-vision",
maxOutputTokens: 2048,
});
const image = fs.readFileSync("./hotdog.png").toString("base64");
const input2 = [
new HumanMessage({
content: [
{
type: "text",
text: "Describe the following image.",
},
{
type: "image_url",
image_url: `data:image/png;base64,${image}`,
},
],
}),
];
const res = await visionModel.invoke(input2);
Click here for the @langchain/google-vertexai
specific integration docs
The value of image_url
must be a base64 encoded image (e.g., 
).
Non-Gemini Models
See above for setting up authentication through Vertex AI to use these models.
Anthropic Claude models are also available through the Vertex AI platform. See here for more information about enabling access to the models and the model names to use.
PaLM models are no longer supported.
Vector Store
Vertex AI Vector Search
Vertex AI Vector Search, formerly known as Vertex AI Matching Engine, provides the industry's leading high-scale low latency vector database. These vector databases are commonly referred to as vector similarity-matching or an approximate nearest neighbor (ANN) service.
import { MatchingEngine } from "langchain/vectorstores/googlevertexai";
Tools
Google Search
- Set up a Custom Search Engine, following these instructions
- Get an API Key and Custom Search Engine ID from the previous step, and set them as environment variables
GOOGLE_API_KEY
andGOOGLE_CSE_ID
respectively
There exists a GoogleCustomSearch
utility which wraps this API. To import this utility:
import { GoogleCustomSearch } from "langchain/tools";
We can easily load this wrapper as a Tool (to use with an Agent). We can do this with:
const tools = [new GoogleCustomSearch({})];
// Pass this variable into your agent.