Jina Embeddings
The JinaEmbeddings
class utilizes the Jina API to generate embeddings for given text inputs. This guide will walk you through the setup and usage of the JinaEmbeddings
class, helping you integrate it into your project seamlessly.
Installationβ
Install the @langchain/community
package as shown below:
- npm
- Yarn
- pnpm
npm i @langchain/community @langchain/core
yarn add @langchain/community @langchain/core
pnpm add @langchain/community @langchain/core
Initializationβ
With this integration, you can use the Jina embeddings model to get embeddings for your text data. Here is the link to the embeddings models.
First, you need to sign up on the Jina website and get the API token from here. You can copy model names from the dropdown in the api playground.
To use the JinaEmbeddings
class, you need an API token from Jina. You can pass this token directly to the constructor or set it as an environment variable (JINA_API_KEY
).
Basic Usageβ
Hereβs how to create an instance of JinaEmbeddings
:
import { JinaEmbeddings } from "@langchain/community/embeddings/jina";
const embeddings = new JinaEmbeddings({
apiKey: "YOUR_API_TOKEN",
model: "jina-clip-v2", // Optional, defaults to "jina-clip-v2"
});
If the apiKey
is not provided, it will be read from the JINA_API_KEY
environment variable.
Generating Embeddingsβ
Embedding a Single Queryβ
To generate embeddings for a single text query, use the embedQuery
method:
const embedding = await embeddings.embedQuery(
"What would be a good company name for a company that makes colorful socks?"
);
console.log(embedding);
Embedding Multiple Documentsβ
To generate embeddings for multiple documents, use the embedDocuments
method.
import { localImageToBase64 } from "@langchain/community/utils/local_image_to_base64";
const documents = [
"hello",
{
text: "hello",
},
{
image: "https://i.ibb.co/nQNGqL0/beach1.jpg",
},
{
image: await localImageToBase64("beach1.jpg"),
},
];
const embeddingsArray = await embeddings.embedDocuments(documents);
console.log(embeddingsArray);
Error Handlingβ
If the API token is not provided and cannot be found in the environment variables, an error will be thrown:
try {
const embeddings = new JinaEmbeddings();
} catch (error) {
console.error("Jina API token not found");
}
Exampleβ
Hereβs a complete example of how to set up and use the JinaEmbeddings
class:
import { JinaEmbeddings } from "@langchain/community/embeddings/jina";
import { localImageToBase64 } from "@langchain/community/embeddings/jina/util";
const embeddings = new JinaEmbeddings({
apiKey: "YOUR_API_TOKEN",
model: "jina-embeddings-v2-base-en",
});
async function runExample() {
const queryEmbedding = await embeddings.embedQuery("Example query text.");
console.log("Query Embedding:", queryEmbedding);
const documents = [
"hello",
{
text: "hello",
},
{
image: "https://i.ibb.co/nQNGqL0/beach1.jpg",
},
{
image: await localImageToBase64("beach1.jpg"),
},
];
const documentEmbeddings = await embeddings.embedDocuments(documents);
console.log("Document Embeddings:", documentEmbeddings);
}
runExample();
Feedback and Supportβ
For feedback or questions, please contact support@jina.ai.
Relatedβ
- Embedding model conceptual guide
- Embedding model how-to guides