ByteDanceDoubaoEmbeddings
This will help you get started with ByteDanceDoubao embedding
models using LangChain. For detailed
documentation on ByteDanceDoubaoEmbeddings
features and configuration
options, please refer to the API
reference.
Overviewโ
Integration detailsโ
Class | Package | Local | Py support | Package downloads | Package latest |
---|---|---|---|---|---|
ByteDanceDoubaoEmbeddings | @langchain/community | โ | โ |
Setupโ
Youโll need to sign up for an ARK API
key
and set it as an environment variable named ARK_API_KEY
. Then you
should create a
entrypoint
for embedding models, and use the entrypointโs name as model
.
Then, youโll need to install the
@langchain/community
package
Credentialsโ
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGCHAIN_TRACING_V2="true"
# export LANGCHAIN_API_KEY="your-api-key"
Installationโ
The LangChain ByteDanceDoubaoEmbeddings integration lives in the
@langchain/community
package:
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
Instantiationโ
Now we can instantiate our model object and embed text:
import { ByteDanceDoubaoEmbeddings } from "@langchain/community/embeddings/bytedance_doubao";
const embeddings = new ByteDanceDoubaoEmbeddings({
model: "ep-xxx-xxx", // your entrypoint's name
});
Indexing and Retrievalโ
Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the working with external knowledge tutorials.
Below, see how to index and retrieve data using the embeddings
object
we initialized above. In this example, we will index and retrieve a
sample document using the demo
MemoryVectorStore
.
// Create a vector store with a sample text
import { MemoryVectorStore } from "langchain/vectorstores/memory";
const text =
"LangChain is the framework for building context-aware reasoning applications";
const vectorstore = await MemoryVectorStore.fromDocuments(
[{ pageContent: text, metadata: {} }],
embeddings
);
// Use the vector store as a retriever that returns a single document
const retriever = vectorstore.asRetriever(1);
// Retrieve the most similar text
const retrievedDocuments = await retriever.invoke("What is LangChain?");
retrievedDocuments[0].pageContent;
LangChain is the framework for building context-aware reasoning applications
Direct Usageโ
Under the hood, the vectorstore and retriever implementations are
calling embeddings.embedDocument(...)
and embeddings.embedQuery(...)
to create embeddings for the text(s) used in fromDocuments
and the
retrieverโs invoke
operations, respectively.
You can directly call these methods to get embeddings for your own use cases.
Embed single textsโ
You can embed queries for search with embedQuery
. This generates a
vector representation specific to the query:
const singleVector = await embeddings.embedQuery(text);
console.log(singleVector.slice(0, 100));
[
0.026051683, 0.029081265, -0.040726297, -0.015116953, -0.010691089,
0.030181013, -0.0065084146, -0.02079503, 0.013575795, 0.03452527,
0.009578291, 0.007026421, -0.030110886, 0.013489622, -0.04294787,
0.011141899, -0.043768786, -0.00362867, -0.0081198225, -0.03426076,
0.010075142, 0.027787417, -0.09052663, -0.06039698, -0.009462592,
0.06232288, 0.051121354, 0.011977532, 0.089046724, 0.059000008,
0.031860664, -0.034242127, 0.020339863, 0.011483523, -0.05429335,
-0.04963588, 0.03263794, -0.05581542, 0.013908403, -0.012356067,
-0.007802118, -0.010027855, 0.00281217, -0.101886116, -0.079341754,
0.011269771, 0.0035983133, -0.027667878, 0.032092705, -0.052843474,
-0.045283325, 0.0382421, 0.0193055, 0.011050924, 0.021132186,
-0.037696265, 0.0006107435, 0.0043520257, -0.028798066, 0.049155913,
0.03590549, -0.0040995986, 0.019772101, -0.076119535, 0.0031298609,
0.03368174, 0.039398745, -0.011813277, -0.019313531, -0.013108803,
-0.044905286, -0.022326004, -0.01656178, -0.06658457, 0.016789088,
0.049952697, 0.006615693, -0.01694402, -0.018105473, 0.0049101883,
-0.004966945, 0.049762275, -0.03556957, -0.015986584, -0.03190983,
-0.05336687, -0.0020468342, -0.0016106658, -0.035291273, -0.029783724,
-0.010153295, 0.052100364, 0.05528949, 0.01379487, -0.024542747,
0.028773975, 0.010087022, 0.030448131, -0.042391222, 0.016596776
]
Embed multiple textsโ
You can embed multiple texts for indexing with embedDocuments
. The
internals used for this method may (but do not have to) differ from
embedding queries:
const text2 =
"LangGraph is a library for building stateful, multi-actor applications with LLMs";
const vectors = await embeddings.embedDocuments([text, text2]);
console.log(vectors[0].slice(0, 100));
console.log(vectors[1].slice(0, 100));
[
0.026051683, 0.029081265, -0.040726297, -0.015116953, -0.010691089,
0.030181013, -0.0065084146, -0.02079503, 0.013575795, 0.03452527,
0.009578291, 0.007026421, -0.030110886, 0.013489622, -0.04294787,
0.011141899, -0.043768786, -0.00362867, -0.0081198225, -0.03426076,
0.010075142, 0.027787417, -0.09052663, -0.06039698, -0.009462592,
0.06232288, 0.051121354, 0.011977532, 0.089046724, 0.059000008,
0.031860664, -0.034242127, 0.020339863, 0.011483523, -0.05429335,
-0.04963588, 0.03263794, -0.05581542, 0.013908403, -0.012356067,
-0.007802118, -0.010027855, 0.00281217, -0.101886116, -0.079341754,
0.011269771, 0.0035983133, -0.027667878, 0.032092705, -0.052843474,
-0.045283325, 0.0382421, 0.0193055, 0.011050924, 0.021132186,
-0.037696265, 0.0006107435, 0.0043520257, -0.028798066, 0.049155913,
0.03590549, -0.0040995986, 0.019772101, -0.076119535, 0.0031298609,
0.03368174, 0.039398745, -0.011813277, -0.019313531, -0.013108803,
-0.044905286, -0.022326004, -0.01656178, -0.06658457, 0.016789088,
0.049952697, 0.006615693, -0.01694402, -0.018105473, 0.0049101883,
-0.004966945, 0.049762275, -0.03556957, -0.015986584, -0.03190983,
-0.05336687, -0.0020468342, -0.0016106658, -0.035291273, -0.029783724,
-0.010153295, 0.052100364, 0.05528949, 0.01379487, -0.024542747,
0.028773975, 0.010087022, 0.030448131, -0.042391222, 0.016596776
]
[
0.0558515, 0.028698817, -0.037476595, 0.0048659276, -0.019229038,
-0.04713716, -0.020947812, -0.017550547, 0.01205507, 0.027693441,
-0.011791304, 0.009862203, 0.019662278, -0.037511427, -0.022662448,
0.036224432, -0.051760387, -0.030165697, -0.008899774, -0.024518963,
0.010077767, 0.032209765, -0.0854303, -0.038666975, -0.036021013,
0.060899545, 0.045867186, 0.003365381, 0.09387081, 0.038216405,
0.011449426, -0.016495887, 0.020602569, -0.02368503, -0.014733645,
-0.065408126, -0.0065152845, -0.027103946, 0.00038956117, -0.08648814,
0.029316466, -0.054449145, 0.034129277, -0.055225655, -0.043182302,
0.0011148591, 0.044116337, -0.046552557, 0.032423045, -0.03269365,
-0.05062933, 0.021473562, -0.011019348, -0.019621233, -0.0003149565,
-0.0046085776, 0.0052610254, -0.0029293327, -0.035793293, 0.034469575,
0.037724957, 0.009572597, 0.014198464, -0.0878237, 0.0056973165,
0.023563445, 0.030928325, 0.025520306, 0.01836824, -0.016456697,
-0.061934732, 0.009764942, -0.035812028, -0.04429064, 0.031323086,
0.056027107, -0.0019782048, -0.015204176, -0.008684945, -0.0010460864,
0.054642987, 0.044149086, -0.032964867, -0.012044753, -0.019075096,
-0.027932597, 0.018542245, -0.02602878, -0.04645578, -0.020976603,
0.018999187, 0.050663687, 0.016725155, 0.0076955976, 0.011448177,
0.053931057, -0.03234989, 0.024429373, -0.023123834, 0.02197912
]
Relatedโ
- Embedding model conceptual guide
- Embedding model how-to guides
API referenceโ
For detailed documentation of all ByteDanceDoubaoEmbeddings features and configurations head to the API reference: https://api.js.langchain.com/classes/\_langchain_community.embeddings_bytedance_doubao.ByteDanceDoubaoEmbeddings.html